跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林羿村
研究生(外文):Yi-cun Lin
論文名稱:以物理披覆兩性雙離子性羧基甜菜鹼高分子之法製備抗生物沾黏薄膜
論文名稱(外文):Fabrication of non-fouling polymeric membrane by coating amphiphatic zwitterionic carboxybetaine polymer
指導教授:胡威文
指導教授(外文):Wei-wen Hu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:107
中文關鍵詞:生物積垢雙離子性
外文關鍵詞:biofoulingzwitterionic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
在海洋工業、食品工業與生醫材料中,生物積垢(biofouling)是個棘手的問題。而許多抗生物沾黏(anti-biofouling)官能基已被發現可降低生物沾黏之形成,其中包含了雙離子性材料(zwitterionic materials),然而雙離子性官能基本身極為親水的特性,使得該材料於疏水性表面上改質極具挑戰。一般而言,疏水材料表面之改質多仰賴化學接枝法,但此種改質方法具有費時、改質均勻性差、製程難以放大等問題。為解決上述問題,我們合成帶有雙離子基團之兩性無規則共聚高分子(amphiphatic random co-polymers),再利用物理批覆之法將其塗佈於疏水薄膜表面,並調控共聚物中羧基甜菜鹼(carboxybetaine)與丙烯酸十八酯(octadecyl acrylate)之比例。當聚丙烯薄膜表面塗佈兩性雙離子性共聚高分子後,當高分子中雙離子性基團含量增加,薄膜表面會顯得更為親水,然而高分子於膜表面之披覆穩定度也會隨之下降。此外我們也發現了降低生物沾黏形成的最佳高分子組成,當聚丙烯膜表面披覆之兩性雙離子性共聚高分子中雙離子性基團含量為26 %時,該薄膜可大幅降低人類血球、大腸桿菌與HT-1080細胞的貼附。在本研究中,我們對於以物理披覆方式將兩性抗沾黏之高分子塗佈於疏水表面上之方法提供了一些想法。
Biofouling is an essentially critical problem on marine industry, food industry and biomaterials. Anti-biofouling functional groups have been investigated to reduce biofouling formation; zwitterionic materials are one of the effective functional groups. It is a challenge to modify the zwitterionic functional groups on a hydrophobic surface because of the high hydrophilicity of zwitterionic materials. In general, chemical grafting method is usually used, but the grafting process is time-consuming and the uniformity of chemical grafting is not easily controlled in a larger scale. To solve the above mentioned problems, we synthesized the amphiphatic random co-polymers containing of zwitterionic moiety to coat on the hydrophobic membrane physically. We controlled the various ratios of carboxybetaine and octadecyl acrylate in copolymers. After coating the zwitterionic copolymers on polypropylene membrane surface, the hydrophilicity of membrane increases along with the zwitterionic content increases, but the coating stability decreases. We found there is an optimal window for reducing the macromoleular fouling formation. While we used the copolymer containing of 26% zwitterionic moiety to coat on membrane, the biofoulings of human blood cells, E.coli and HT-1080 cells reduce significantly. We provide guidance on physical coating of amphiphatic antifouling copolymer on hydrophobic surface.
摘要
Abstract
誌謝
目錄
圖目錄
表目錄
1 第一章 序論
1.1 研究動機
1.2 研究目的
2 第二章 文獻回顧
2.1 生物沾黏(biofouling)之簡介
2.2 生物分子與材料表面之作用
2.2.1 蛋白質與材料表面之作用
2.2.2 細菌與材料表面之作用
2.3 抗生物積垢材料之介紹
2.3.1 聚乙二醇 (PEG)之簡介與發展
2.3.2 仿生雙離子性高分子抗蛋白質之相關研究
2.3.2.1 Phosphorylcholine類雙離子性高分子
2.3.2.2 Sulfobetaine類雙離子性高分子
2.3.2.3 Carboxybetaine類雙離子性高分子
2.4 高分子合成與表面改質
2.4.1 共聚物簡介
2.4.2 表面改質方法
3 第三章 實驗藥品、儀器設備與方法
3.1 實驗藥品與材料
3.2 儀器設備
3.3 實驗策略
3.3.1 實驗架構
3.4 實驗方法
3.4.1 共聚物製備
3.4.1.1 兩性無規則共聚高分子(Amphiphilic random copolymer)製備
3.4.1.2 兩性雙離子性無規則共聚高分子(Amphiphilic Zwitterionic random copolymer)之製備
3.4.2 共聚高分子之性質分析
3.4.2.1 核磁共振 (NMR)之鑑定
3.4.2.2 膠體滲透層析儀 (GPC)之分析
3.4.3 PP膜前處理
3.4.4 共聚物於PP膜表面塗佈之步驟
3.4.5 共聚物塗佈於聚丙烯薄膜表面之性質分析
3.4.5.1 貼附穩定度測試
3.4.5.2 薄膜表面親水性質測定
3.4.6 塗佈共聚高分子之聚丙烯膜抗生物分子能力測試
3.4.6.1 蛋白質於基材膜表面貼附實驗
3.4.6.2 血球於基材膜表面貼附實驗
3.4.6.3 細胞於基材膜表面貼附實驗
3.4.6.4 細菌貼附實驗
4 第五章 結果與討論
4.1 兩性雙離子性無規則共聚高分子之製備
4.2 共聚高分子之性質分析
4.3 共聚物塗佈於聚丙烯薄膜表面之性質分析
4.3.1 親疏水化程度比較
4.3.2 高分子塗佈穩定性測試
4.4 塗佈共聚高分子之聚丙烯膜抗生物分子能力測試
4.4.1 蛋白質吸附測試
4.4.2 人類血球貼附之測試
4.4.3 細菌貼附測試
4.4.4 細胞貼附測試
4.5 薄膜表面親水性質與抗生物沾黏之關係
5 第五章 結論
6 第六章 參考文獻


1. Bixler, G.D., Bhushan, B., Biofouling: Lessons from Nature. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2012. 370(1967): p. 2381-2417.
2. Tripathi, B.P., Dubey, N. C., Stamm, M., Polyethylene Glycol Cross-Linked Sulfonated Polyethersulfone Based Filtration Membranes with Improved Antifouling Tendency. Journal of Membrane Science, 2014. 453: p. 263-274.
3. Meng, J.Q., Yuan, T., Kurth, C. J., Shi, Q., Zhang, Y. F., Synthesis of Antifouling Nanoporous Membranes Having Tunable Nanopores via Click Chemistry. Journal of Membrane Science, 2012. 401: p. 109-117.
4. Chen, X.R., Su, Y., Shen, F., Wan, Y. H., Antifouling Ultrafiltration Membranes Made from PAN-b-PEG Copolymers: Effect of Copolymer Composition and PEG Chain Length. Journal of Membrane Science, 2011. 384(1-2): p. 44-51.
5. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16: p. 9604-9608.
6. Stoodley, P., et al., Biofilms as complex differentiated communities. Annual Review of Microbiology, 2002. 56: p. 187-209.
7. Bixler, G.D., Theiss, A., Bhushan, B., Lee, S. C., Anti-Fouling Properties of Microstructured Surfaces Bio-Inspired by Rice Leaves and Butterfly Wings. J Colloid Interface Sci, 2014. 419: p. 114-33.
8. Mrksich, M., Whitesides, G. M., Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells. Annual Review of Biophysics and Biomolecular Structure, 1996. 25: p. 55-78.
9. Vroman, L., Adams, A.L., Identification of Rapid Changes at Plasma-Solid Interfaces. Journal of Biomedical Materials Research, 1969. 3(1): p. 43-67.
10. ANDRADE, J.D., Surface and Interfacial Aspects of BiomedicalPolymers. 1985, New York and London: Plenum Press.
11. Wu, C.A., Lenhoff, A. M.,, Electrostatic and Van-Der-Waals Contributions to Protein Adsorption, 2. Modeling of Ordered Arrays. Langmuir, 1994. 10(10): p. 3705-3713.
12. Queiroz, J.A., Tomaz, C.T., Cabral, J.M.S., Hydrophobic Interaction Chromatography of Proteins. J. Biotechnol, 2001. 87: p. 143-159.
13. Hunter, R., Foundations of Colloid Science. Vol. I. 1989, New York: Oxford Science.
14. Stoodley, P., Sauer, K., Davies, D. G., Costerton, J. W., Biofilms as Complex Differentiated Communities. Annu Rev Microbiol, 2002. 56: p. 187-209.
15. Lichter, J.A., Van Vliet, Krystyn J., Rubner, Michael F., Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. Macromolecules, 2009. 42(22): p. 8573-8586.
16. Kingshott, P., Wei, J., Bagge-Ravn, D., Gadegaard, N., Gram, L., Covalent Attachment of Poly(ethylene glycol) to Surfaces, Critical for Reducing Bacterial Adhesion. Langmuir, 2003. 19(17): p. 6912-6921.
17. Wang, I.W., Anderson, J. M., Marchant, R. E., Staphylococcus-Epidermidis Adhesion to Hydrophobic Biomedical Polymer Is Mediated by Platelets. Journal of Infectious Diseases, 1993. 167(2): p. 329-336.
18. Wang, I.W., Anderson, J. M., Jacobs, M. R., Marchant, R. E., Adhesion of Staphylococcus-Epidermidis to Biomedical Polymers - Contributions of Surface Thermodynamics and Hemodynamic Shear Conditions. Journal of Biomedical Materials Research, 1995. 29(4): p. 485-493.
19. Poortinga, A.T., Bos, R., Norde, W., Busscher, H. J., Electric Double Layer Interactions in Bacterial Adhesion to Surfaces. Surface Science Reports, 2002. 47(1): p. 3-32.
20. Mueller, J., Davis, R. H., Protein Fouling of Surface-Modified Polymeric Microfiltration Membranes. Journal of Membrane Science, 1996. 116(1): p. 47-60.
21. Abuchowski, A., van Es, T., Palczuk, N. C., Davis, F. F., Alteration of Immunological Properties of Bovine serum albumin by Covalent Attachment of Polyethylene glycol. J Biol Chem, 1977. 252(11): p. 3578-81.
22. Chaikof, E.L., Merrill, E. W., Callow, A. D., Connolly, R. J., Verdon, S. L., Ramberg, K., PEO Enhancement of Platelet Deposition, Fibrinogen Deposition, and Complement C3 Activation. J Biomed Mater Res, 1992. 26(9): p. 1163-8.
23. Verdon, S.L., Chaikof, E. L., Coleman, J. E., Hayes, L. L., Connolly, R. J. ,Ramberg, K., Merrill, E. W., Callow, A. D., Scanning Electron Microscopy Analysis of Polyethylene Oxide Hydrogels for Blood Contact. Scanning Microsc, 1990. 4(2): p. 341-9; discussion 349-50.
24. Pekala, R.W., Merrill, E. W., Lindon, J., Kushner, L., Salzman, E. W., Fibrinogen Adsorption and Platelet Adhesion at The Surface of Modified Polypropylene Glycol/Polysiloxane Networks. Biomaterials, 1986. 7(5): p. 379-85.
25. Merrill, E.W., Salzman, E. W., Wan, S., Mahmud, N., Kushner, L., Lindon, J. N., Curme, J., Platelet-Compatible Hydrophilic Segmented Polyurethanes from Polyethylene Glycols and Cyclohexane Diisocyanate. Trans Am Soc Artif Intern Organs, 1982. 28: p. 482-7.
26. Dimilla, P.A., Folkers, J. P., Biebuyck, H. A., Harter, R., Lopez, G. P., Whitesides, G. M., Wetting and Protein Adsorption of Self-Assembled Monolayers of Alkanethiolates Supported on Transparent Films of Gold. Journal of the American Chemical Society, 1994. 116(5): p. 2225-2226.
27. Mrksich, M., Sigal, G. B., Whitesides, G. M., Surface-Plasmon Resonance Permits in-Situ Measurement of Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates on Gold. Langmuir, 1995. 11(11): p. 4383-4385.
28. Prime, K.L., Whitesides, G. M., Adsorption of Proteins onto Surfaces Containing End-Attached Oligo(Ethylene Oxide) - a Model System Using Self-Assembled Monolayers. Journal of the American Chemical Society, 1993. 115(23): p. 10714-10721.
29. J. H. LEE, H.B.L., J. D. ANDRADE, Blood Compatibility of Polyethylene Oxide Surfaces. Progress in Polymer Science, 1995. 20: p. 1043-1079.
30. Zheng Zhang, T.C., Shengfu Chen, Shaoyi Jiang, Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 2006. 22: p. 10072-10077.
31. S. J. Singer, G.L.N., The Fluid Mosaic Model of the Structure of Cell Membranes. Science, 1972. 175: p. 720-731.
32. R.F.A. Zwaal, P.C., L.L.M. van Deenen, Membrane Asymmetry and Blood Coagulation. Nature, 1977. 268: p. 358 - 360.
33. Lewis, A.L., Phosphorylcholine-based Polymers and Their Use in the Prevention of Biofouling. Colloids and Surfaces B: Biointerfaces 2000. 18: p. 261-275.
34. R.F.A. Zwaal, H.C.H., Blood Cell Membranes and Haemostasis. Haemostasis, 1982. 11: p. 12-39.
35. J.A. Hayward, D.C., Biomembrane Surfaces as Models for Polymer Design: the Potential for Haemocompatibility. Biomaterials, 1984. 5: p. 135-142.
36. R. Erik Holmlin, X.C., Robert G. Chapman, Shuichi Takayama, George M. Whitesides, Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir, 2001. 17: p. 2841-2850.
37. M. Pons, C.V., D. Chapman, A 13C-NMR Study of 10, 12-tricosadiynoic acid and the Corresponding Phospholipid and Phospholipid Polymer. Biochim. Biophys. Acta, 1983. 730: p. 306-312.
38. M. Pons, D.S.J., D. Chapman, A Study of the Spectra of Diacteylenic Phospholipid Polymers in Solvents and Dispersions. J. Polym. sci., Polym. Lett. Ed., 1982. 20: p. 513-520.
39. Kadoma, Y., Nakabayashi N., Masuhara, E., Yamauchi, J., Synthesis and Hemolysis Test of Polymer Containing Phophorylcholine Groups. Koubunshi Ronbunshu (Jpn J Polym Sci Technol), 1978. 35: p. 423-427.
40. Ishihara, K., Ueda, T., Nakabayashi, N., Preparation of Phospholipid Polymers and Their Properties as Polymer Hydrogel Membranes. Polymer Journal, 1990. 22(5): p. 355-360.
41. Ravi S. Kane, P.D., George M. Whitesides, Kosmotropes Form the Basis of Protein-Resistant Surfaces. Langmuir 2003. 19: p. 2388-2391.
42. Yinghua Ma, Y.T., Norman C. Billingham, Steven P. Armes, Well-Defined Biocompatible Block Copolymers via Atom Transfer Radical Polymerization of 2-Methacryloyloxyethyl Phosphorylcholine in Protic Media. Macromolecules, 2003. 36: p. 3475-3484.
43. Yung Chang, S.C., Zheng Zhang, Shaoyi Jiang, Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir, 2006. 22: p. 2222-2226.
44. Zheng Zhang, S.C., Yung Chang, Shaoyi Jiang, Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. J. Phys. Chem. B, 2006. 110: p. 10799-10804.
45. Cheng, G., Zhang, Z., Chen, S. F, Bryers, J. D., Jiang, S. Y., Inhibition of Bacterial Adhesion and Biofilm Formation on Zwitterionic Surfaces. Biomaterials, 2007. 28(29): p. 4192-4199.
46. Azzaroni, O., Brown, A. A., Huck, W. T. S., UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self-Association. Angewandte Chemie-International Edition, 2006. 45(11): p. 1770-1774.
47. Cheng, N., Brown, A. A., Azzaroni, O., Huck, W. T. S., Thickness-Dependent Properties of Polyzwitterionic Brushes. Macromolecules, 2008. 41(17): p. 6317-6321.
48. Wei Yang, S.C., Gang Cheng, Hana Vaisocherova´, Hong Xue, Wei Li, Jinli Zhang, Shaoyi Jiang, Film Thickness Dependence of Protein Adsorption from Blood Serum and Plasma onto Poly(sulfobetaine)-Grafted Surfaces. Langmuir, 2008. 24: p. 9211-9214.
49. Yung Chang, S.-C.L., Akon Higuchi,Ruoh-Chyu Ruaan,Chih-Wei Chu,Wen-Yih Chen, A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir, 2008. 24: p. 5453-5458.
50. Zheng Zhang, J.A.F., Laifeng Wang, Ye Gao, James A. Callow, Maureen E. Callow, Shaoyi Jiang, Polysulfobetaine-Grafted Surfaces as Environmentally Benign Ultralow Fouling Marine Coatings. Langmuir, 2009. 25(23): p. 13516-13521.
51. Nagy, J.K., Hoffmann, K., Keyes, M.H., Gray, D.N., Oxenoid, K., Sanders, C.R., Use of Amphipathic Polymers to Deliver a Membrane Protein to Lipid Bilayers. FEBS Lett, 2001. 501(2-3): p. 115-120.
52. Zheng Zhang, S.C., Shaoyi Jiang, Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006. 7: p. 3311-3315.
53. Zheng Zhang, H.V., Gang Cheng , Wei Yang, Hong Xue, Shaoyi Jiang, Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces: Structural and Environmental Effects. Biomacromolecules, 2008. 9: p. 2686-2692.
54. Jon Ladd, Z.Z., Shengfu Chen, Jason C. Hower, Shaoyi Jiang, Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules, 2008. 9: p. 1357-1361.
55. Wei Yang, H.X., Wei Li, Jinli Zhang, Shaoyi Jiang, Pursuing "Zero" Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir, 2009. 25(19): p. 11911-6.
56. Gang Cheng, G.L., Hong Xue, Shengfu Chen, James D. Bryers, Shaoyi Jiang, Zwitterionic Carboxybetaine Polymer Surfaces and Their Resistance to Long-term Biofilm Formation. Biomaterials, 2009. 30(28): p. 5234-40.
57. grill, A., Cold Plasma in Materials Fabrication. 1994: IEEE Press.
58. Chapman, B., Glow Discharge Processes. New York: Wiley.
59. Higuchi, A., Nakajima, T., Morisato, A., Ando, M., Nagai, K., Nakagawa, T., Estimation of Diffusion and Permeability Coefficients of CO2 in Polymeric Membranes by FTIR Method. Journal of Polymer Science Part B-Polymer Physics, 1996. 34(13): p. 2153-2160.
60. Ma, X.L., Su, Y. L., Sun, Q., Wang, Y. Q., Jiang, Z. Y., Preparation of Protein-Adsorption-Resistant Polyethersulfone Ultrafiltration Membranes Through Surface Segregation of Amphiphilic Comb Copolymer. Journal of Membrane Science, 2007. 292(1-2): p. 116-124.
61. Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S., Lee, C. H., Hydrophilic Modification of Polypropylene Microfiltration Membranes by Ozone-Induced Graft Polymerization. Journal of Membrane Science, 2000. 169(2): p. 269-276.
62. Xu, F.J., Neoh, K. G., Kang, E. T., Bioactive Surfaces and Biomaterials via Atom Transfer Radical Polymerization. Progress in Polymer Science, 2009. 34(8): p. 719-761.
63. Curran, D.P., Eichenberger, E., Collis, M., Roepel, M. G., Thoma, G., Group Transfer Addition-Reactions of Methyl(Phenylseleno)Malononitrile to Alkenes. Journal of the American Chemical Society, 1994. 116(10): p. 4279-4288.
64. Wang, J.S., Matyjaszewski, K., Living Controlled Radical Polymerization - Transition-Metal-Catalyzed Atom-Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. Macromolecules, 1995. 28(22): p. 7572-7573.
65. 區理函, 疏水表面披覆兩性雙離子高分子以抑制生物積垢. 2011, 國立中央大學.
66. 王裕貴, 兩性雙離子性共聚物之合成以抵抗聚丙烯膜表面之生物積垢. 2012, 國立中央大學.
67. George B. Sigal, M.M., George M. Whitesides, Effect of Surface Wettability on the Adsorption of Proteins and Detergents. J. Am. Chem. Soc, 1998. 120: p. 3464-3473.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊