跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 16:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昀
研究生(外文):Yun Lee
論文名稱(外文):Blends of shape-stabilized poly(ethylene glycol)/silica Fume composites as tunable sustained release phase change materials
指導教授:李度李度引用關係
指導教授(外文):Tu Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:76
中文關鍵詞:相轉移材料聚乙二醇燻矽
外文關鍵詞:phase change materialspoly(ethylene glycol)silica fume
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究主要目的是找到固-液轉換上型態穩定的相轉移材料,聚乙二醇/燻矽複合物,它不僅有較寬廣的結晶溫度範圍而且具有毛細管作用力可使得聚乙二醇在液態時並不會從孔洞內流出,這樣的結果可應用在更廣的能源儲存上。
固-液轉換上型態穩定的相轉移材料,利用含浸法製備聚乙二醇/燻矽複合物,以不同重量比例的聚乙二醇負載於燻矽載體上。結果發現,負載較少的聚乙二醇 (25%) 於燻矽載體上,會明顯的看到結晶溫度變得比較寬廣不像純的聚乙二醇有很精準的結晶溫度。因為燻矽載體孔內有牆壁效應會影響聚乙二醇在孔洞內的結晶行為。使得靠近牆壁的聚乙二醇無法結晶成為非晶相,只有遠離牆壁的聚乙二醇不受牆壁影響能順利結晶。所以負載較少的聚乙二醇的結晶性比較差,導致其有較寬廣的結晶溫度約為攝氏24.1至-4.2度且結晶點也較低約為攝氏12度。然而負載較高(75%)的複合物擁有較多遠離牆壁的聚乙二醇結晶使得其結晶行為與純的聚乙二醇相似,其結晶溫度範圍約為攝氏41.7至12.8度。
因此,若我們想要調製寬廣的固-液轉換上型態穩定的相轉移材料,只需要混摻25%的複合物及75%的複合物。25%的複合物及75%的複合物以不同重量比例混摻1:3、1:5及1:8。我們猜測大量的25%複合物會把少量的75%複合物給包圍。使得在降溫過程中至攝氏41度時,75%的複合物應該要開始放熱結晶,但因為被大量的25%複合物所包圍,使得熱無法很快地傳遞出去。隨著溫度持續下降,驅動力的不足使冷卻速率下降,而影響了75%複合物的結晶速率,當溫度在持續下探至攝氏24度時也到達了25%複合物開始放熱結晶的溫度,所以混摻後的複合物有更寬廣的結晶溫度行為約為攝氏35.2至-5.4度。
再者,這樣的一個混摻行為即可得到較寬廣的結晶溫度範圍。那麼將25%複合物改成低成本的燻矽載體也會有相同的影響。75%的複合物與燻矽載體以不同比例混摻1:1及1:2。同樣的,我們猜測大量的燻矽會把少量的75%複合物給包圍,而熱被包圍無法很快地傳遞出去。隨著溫度持續下降,驅動力的不足使冷卻速率下降,也影響了75%的複合物的結晶速率,其結晶溫度範圍為攝氏36.9至-2.2度。
我們期待這樣的混摻方式,使得廣泛的結晶溫度範圍在儲能方面能有更多的價值。

The aim of this thesis was to prepare a solid-liquid shape-stabilized phase change materials (PCMs), polyethylene glycol/silica fume (PEG/SF) composite, which not only had a broad PEG crystallization temperature range for more suitable thermal energy storage applications but also had the melted PEG retained in porous SF through the capillary force of the pore.
Shape-stabilized PEG/SF composites with various weight ratios of PEG from 5 to 75% were prepared by the impregnation method. As the results, the wall-effect of SF had caused a broad phase transition temperature range going from 24.1o to -4.2oC and lowered the crystallization point to about 12oC for PEG in the PEG25/SF composite. A higher weight ratio of PEG could have made more PEG crystallize in the SF pore and the crystallization temperature range going from 41.7o to 12.8oC was close to the pure PEG in the PEG75/SF composite. Moreover, blends of PEG75/SF composite and PEG25/SF composite by weight ratios of 1:3, 1:5 and 1:8 were prepared to produce tunable sustained heat release PCMs. The PEG25/SF composites in large had encompassed the PEG75/SF composites. So, the heat release from the partial crystallization of PEG in the PEG75/SF composite initially could not be totally transferred due to the insulation of the PEG25/SF composites and the small driving force of the temperature difference had slowed down the heat transfer rate within the PEG75/SF composite. So, the crystallization rate of PEG in the PEG75/SF composite was also slowed down. Consequently, the blended materials exhibited a broad crystallization temperature range going from 35.2o to -5.4oC. Finally, we also used the low-cost SF powders to replace the PEG25/SF composite to form physical blends with the PEG75/SF composite to broaden the crystallization temperature range going from 36.9o to -2.2oC which could also have applications in thermal energy storage.

Table of Contents
摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Phase change materials 1
1.2 References 12
Chapter 2 Experimental Methods 21
2.1 Materials 21
2.2 Experimental methods 21
2.2.1 Preparation of uniform pore size silica supporting materials 21
2.2.2 Preparation of shape-stabilized PEG/SF composite 22
2.3 Analytical measurements 23
2.3.1 Thermogravimetric analysis (TGA) 23
2.3.2 Low vacuum scanning electron microscopy (LV-SEM) 23
2.3.3 Micromeritics ASAP 2010 24
2.3.4 Fourier transform infrared spectroscopy (FT-IR) 24
2.3.5 Powder X-ray diffraction (PXRD) 25
2.3.6 Small-angle X-ray scattering (SAXS) 25
2.3.7 Low temperature differential scanning calorimetry (LT-DSC) 25
2.4 References 27
Chapter 3 Results and Discussion 28
3.1 Thermal stability of shape-stabilized polyethylene glycol/silica fume (PEG/SF) composites 28
3.2 Pore structure of shape-stabilized PEG/SF composites 30
3.3 Chemical properties of shape-stabilized PEG/SF composites 33
3.4 Crystallization properties of shape-stabilized PEG/SF composites 35
3.5 Thermal properties of shape-stabilized PEG/SF composites 38
3.5.1 Phase change properties of shape-stabilized PEG/SF composites 38
3.5.2 Thermal conductivity prediction of shape-stabilized PEG/SF composites 42
3.6 Blends of a tunable shape-stabilized of PEG/SF composites 44
3.7 Blends of a shape-stabilized PEG/SF with SF 48
3.8 Conclusions 50
3.9 References 51
Chapter 4 Conclusions and Future works 54
4.1 Shape-stabilized PEG/SF composites 54
4.2 Future works 55
4.3 References 56
Appendix 57
Silica fume (SF) 57
Reference 58

Wang, Y.; Xia, T. D.; Zheng, H.; Feng, H. X. Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage. Energy and Buildings 2011, 43 (9), 2365-2370.
Bal, L. M.; Satya, S.; Naik, S. N. Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew. Sustain. Energy Rev. 2010, 14 (8), 2298-2314.
Dutil, Y.; Rousse, D. R.; Salah, N. B.; Lassue, S.; Zalewski, L. A review on phase-change materials: mathematical modeling and simulations. Renew. Sustain. Energy Rev. 2011, 15 (1), 112-130.
Zalba, B.; Marı́na, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23 (3), 251-283.
Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13 (2), 318-345.
Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: materials and applications. Energ. Convers. Manage. 2004, 45 (9-10), 1597-1615.
Meng, Q.; Hu, J. A poly(ethylene glycol)-based smart phase change material. Sol. Energy Mater. Sol. Cells 2008, 92 (10), 1260-1268.
Telkes, M.; Raymond, E. Storing solar heat in chemicals - a report on the Dover house. Ind. Heat Engr. 1949, 46 (11), 80-86.
Rathod, M. K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sustain. Energy Rev. 2013, 18, 246-258.
Abhat, A. Low temperature latent heat thermal energy storage: heat storage materials, Sol. Energy 1983, 30 (4), 313–332.
Lane, G. A. Low temperature heat storage with phase change materials. Int. J. Ambient Eng. 1980, 1 (3), 155-168.
Sari, A.; Kaygusuz, K. Thermal performance of palmitic acid as a phase change energy storage material. Energy Convers. Mgmt. 2002, 43 (6), 863-876.
Lee, T.; Chiu, Y. H.; Lee, Y.; Lee, H. L. Thermal properties and structural characterizations of new types of phase change material: anhydrous and hydrated palmitic acid/camphene solid dispersions. Thermochim. Acta 2014, 575, 81-89.
Telkes, M. Nucleation of supersaturated inorganic salt solutions. Ind. Eng. Chem. Fund. 1952, 44 (6), 1308-1310.
Sari, A.; Sari, H.; Onal, A. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials. Energy Convers. Manag. 2004, 45 (3), 364-376.
Dimaano, M.; Escoto, A. Preliminary assessment of a mixture of capric acid and lauric acids for low-temperature thermal energy storage. Energy 1998, 23 (5), 421-427.
Shukla, A.; Buddhi, D.; Sawhney, R. L. Solar water heaters with phase change material thermal energy storage medium: a review. Renew. Sustain. Energy Rev. 2009, 13 (8), 2119-2125.
Kuznik, F.; David, D.; Johannes, K.; Roux, J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2011, 15 (1), 379-391.
Wang, C.; Feng, L.; Yang, H.; Xin, G.; Li, W.; Zheng, J.; Tian, W.; Li, X. Graphene oxide stabilized polyethylene glycol for heat storage. Phys. Chem. Chem. Phys. 2012, 14 (38), 13233-13238.
Karaman, S.; Karaipekli, A.; Sar, A.; Bicer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95 (7), 1647-1653.
Alkan, C.; Günther, E.; Hiebler, S.; Ensari, ö.F.; Kahraman D. Polyethylene glycol-sugar composites as shape stabilized phase change materials for thermal energy storage. Polym.Compos. 2012, 33 (10), 1728-1736.
Liao, C. S.; Ye, W. B. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochim. Acta 2004, 49 (27), 4993-4998.
Guo, Q.; Wang, T. Influence of SiO2 pore structure on phase change enthalpy of shape-stabilized polyethylene glycol/silica composites. J. Mater. Sci. 2013, 48 (10), 3716-3721.
Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids. Macromol. Mater. Eng. 2003, 288 (3), 259-264.
Ginés, J. M.; Arias, M. J.; Rabasco, A. M.; Novák, C.; Ruiz-Conde, A.; Sánchez-Soto, P. J. Thermal characterization of polyethylene glycols applied in the pharmaceutical technology using differential scanning calorimetry and hot stage microscopy. J. Therm. Anal. 1996, 46 (1), 291-304.
Pielichowski, K.; Fleituch, K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 2002, 13 (10-12), 690-696.
Fornes, R. E.; Grady, P. L.; Hersh, S. P.; Bhat, G. R.; Morosoff, N. X-ray diffraction of nylon-PEG blends. J. Polym. Sci. 1976, 14 (3), 559-563.
Barnes, W. H.; Ross, S. The diffraction of X-rays by the higher polyethylene glycols and by polymerized ethylene oxides. J. Am. Chem. Soc. 1936, 58 (7), 1129-1131.
Walter, E. R.; Redding, F. The 133rd national meeting American Chemical Society. Chem. Eng. News 1958, 36 (10), 76-127.
Craig, D. Q. M.; Newton, J. M. Characterization of polyethylene glycols using differential scanning calorimetry. Int. J. Pharm. 1991, 74 (1), 33-41.
Li, W. D.; Ding, E. Y. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material. Sol. Energy Mater. Sol. Cells 2007, 91 (9), 48-53.
Wang, W.; Yang, X.; Fang, Y.; Ding, J, Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials. Appl. Energ. 2009, 86 (2), 170-174.
Feng, L.; Zheng, J.; Yang, H.; Guo, Y.; Li, W.; Li X. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 2011, 95 (2), 644-650.
Xiao, X.; Zhang, P.; Li, M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl. Energ. 2013, 112. 1357-1366.
Wang, W. L.; Yang, X. X; Fang, Y. T.; Ding, J.; Yan, J. Y. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage. Appl. Energ. 2009, 86 (9), 1479-1783.
Yang, H.; Feng, L.; Wang, C.; Zhoa, W.; Li, X. Confinement effect of SiO2 framework on phase change of PEG in shape-stabilized PEG/SiO2 composites. Eur. Polym. J. 2012, 48 (4), 803-810.
Wang, W. L; Yang, X. X; Fang, Y. T; Ding, J.; Yan, J. Y. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-aluminum nitride. Appl. Energ. 2009, 86 (7–8), 1196-1200.
Karaman, S.; Karaipekli, A.; Sar, A.; Bicer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95 (7), 1647-1653.
Şentürk, S. B.; Kahraman, D.; Alkan, C.; Gökçeİ. Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydr. Polym. 2011, 84 (1), 141-144.
Farid, M.; Kong, W. Under floor heating with latent heat storage. J. Power and Energy Part A 2001, 215 (5), 601-609.
Lin, K.; Zhang, Y.; Xu, X.; Di, H.; Yang, R.; Qin, P. Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy and Buildings 2005, 37 (3), 215–220.
Nagano, K.; Takeda, S.; Mochida, T.; Shimakura, K.; Nakamura T. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage - heat response in small scale experiments. Energy and Buildings 2006, 38 (5), 436-446.
Gin, B.; Farid, M. M. The use of PCM panels to improve storage condition of frozen food. J. Food Eng. 2010, 100 (2), 372-376.
Martin, V.; He, B.; Setterwall, F. Direct contact PCM-water cold storage. Appl. Eng. 2010, 87 (8), 2652-2659.
Scalat, S.; Banu, D.; Hawes, D.; Parish, J.; Haghighata, F.; Feldman, D. Full scale thermal testing of latent heat storage in wallboard. Sol. Energy Mater. Sol. Cells 1996, 44 (1), 49–61.
Shilei, L.; Guohui, F.; Neng, Z.; Li, D. Experimental study and evaluation of latent heat storage in phase change materials wallboards. Energy and Buildings 2007, 39 (10), 1088-1091.
Zhou, G.; Yang, Y.; Wang, X.; Zhou, S. Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation. Appl. Eng. 2009, 86 (1), 52-59.
Yagi, J.; Akiyama, T. Storage of thermal energy for effective use of waste heat from industries. J. Mater. Process. Technol. 1995, 48 (1-4), 793–804.
Nomura, T., Okinaka, N.; Akiyama, T. Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant. Resour. Conserv. Recy. 2010, 54 (11), 1000-1006.
Vasiliev, L. L.; Burak, V. S.; Kulakov, A. G.; Mishkinis, D. A.; Bohan, P. V. Latent heat storage modules for preheating internal combustion engines: application to a bus petrol engine. Appl. Therm. Eng. 2000, 20 (10), 913-923.
Pasupathy, A.; Velraj, R. Effect of double layer phase change material in building roof for year round thermal management. Energy and Buildings 2008, 40 (3), 193-203.
Li, J.; He, L.; Liu, T.; Cao, X.; Zhu, H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 2013, 118, 48-53.
Wang, C.; Feng, L.; Li, W.; Zheng, J.; Tian, W.; Li, X. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials. Sol. Energy Mater. Sol. Cells 2012, 105, 21-26.
Parveen, S.; Misra, R.; Sahoo, S. K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed-nanotechno. 2012, 8 (2), 147-166.
Rocca, J. D.; Liu, D.; Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44 (10), 957 - 968.
Modi, S.; Anderson, B. D. Determination of drug release kinetics from nanoparticles: Overcoming pitfalls of the dynamic dialysis method. Mol. Pharmaceutics 2013, 10 (8), 3076-3089.
Zhu, W.; Zhou, Y.; Ma, W.; Li, M.; Yu, J.; Xie, K. Using silica fume as silica source for synthesizing spherical ordered mesoporous silica. Mater. Lett. 2013, 92, 129-131.
Frederikse, H. P. R. Handbook of chemistry and physics. Boca Raton, Fla. 90th ed. 2009-2010. Chapter 12, 12-213.
Guo, Q.; Wang, T. Influence of SiO2 pore structure on phase change enthalpy of shape-stabilized polyethylene glycol/silica composites. J. Mater. Sci. 2013, 48 (10), 3716-3721.
Lee, J. A.; Rösner, H.; Corrigan, J. F.; Huang, Y. Phase transitions of naphthalene and its derivatives confined in mesoporous silicas. J. Phys. Chem. 2011, 115 (11), 4738-4748.
Guo, Q.; Wang, T. Influence of SiO2 pore structure on phase change enthalpy of shape-stabilized polyethylene glycol/silica composites. J. Mater. Sci. 2013, 48 (10), 3716-3721.
Evans, R.; Marconi, U. M. B. Phase equilibria and solvation forces for fluids confined between parallel walls. J. Chem. Phys. 1987, 86 (12), 7138-7148.
Milea, C. A.; Bogatu, C.; Dutaˇ, A. The influence of parameters in silica sol gel process. Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences 2011, 4 (1), 59-66.
O’neill, M. J. Measurement of specific heat functions by differential scanning calorimetry. Anal. Chem. 1966, 38 (10), 1331-1336.
Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity. Pure &; Appl. Chem. 1985, 57 (4), 603-619.
Liu, J. L.; Lin, R. B. Structural properties and reactivities of amino-modified silica fume solid sorbents for low-temperature CO2 capture. Powder Technol. 2013, 241, 181-195.
Feng, L.; Zheng, J.; Yang, H.; Guo, Y.; Li, W.; Li X. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 2011, 95 (2), 644-650.
Wang, C.; Feng, L.; Li, W.; Zheng, J.; Tian, W.; Li, X. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials. Sol. Energy Mater. Sol. Cells 2012, 105, 21-26.
Karaman, S.; Karaipekli, A.; Sar, A.; Bicer, A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95 (7), 1647-1653.
Alkan, C.; Günther, E.; Hiebler, S.; Ensari, ö.F.; Kahraman D. Polyethylene glycol-sugar composites as shape stabilized phase change materials for thermal energy storage. Polym.Compos. 2012, 33 (10), 1728-1736.
Liao, C. S.; Ye, W. B. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes. Electrochim. Acta 2004, 49 (27), 4993-4998.
Ginés, J. M.; Arias, M. J.; Rabasco, A. M.; Novák, C.; Ruiz-Conde, A.; Sánchez-Soto, P. J. Thermal characterization of polyethylene glycols applied in the pharmaceutical technology using differential scanning calorimetry and hot stage microscopy. J. Therm. Anal. 1996, 46 (1), 291-304.
Guo, Q.; Wang, T. Influence of SiO2 pore structure on phase change enthalpy of shape-stabilized polyethylene glycol/silica composites. J. Mater. Sci. 2013, 48 (10), 3716-3721.
Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids. Macromol. Mater. Eng. 2003, 288 (3), 259-264.
Lee, J. A.; Rosener, H.; Corrigan, J. F.; Huang, Y. Phase transitions of naphthalene and its derivatives confined in mesoporous silicas. J. Phys. Chem. C. 2011,115 (11), 4738-4748.
Oya, T.; Nomura, T.; Okinaka, N.; Akiyama, T. Phase change composite based on porous nickel and erythritol. Appl. Therm. Eng. 2012, 40, 373-377.
Frederikse, H. P. R. Handbook of chemistry and physics. Boca Raton, Fla. 90th ed. 2009-2010. Chapter 12, 12-213.
Wang, W.; Yang, X.; Fang, Y.; Ding, J, Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials. App. Eng. 2009, 86 (2), 170-174.
Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336 (6084), 1018-1023.
Wang, W. L.; Yang, X. X; Fang, Y. T.; Ding, J.; Yan, J. Y. Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage. Appl. Energ. 2009, 86 (9)1479-1783.
Milea, C. A.; Bogatu, C.; Dutaˇ, A. The influence of parameters in silica sol gel process. Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences 2011, 4 (1), 59-66.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. Biomimetic Taste Receptors with Chiral Recognition by Photoluminescent Metal-Organic Frameworks Chelated with Polyaniline Helices
2. Structural Evolution of Metal-Organic Frameworks - From Primary Crystals to Spherical Agglomerates
3. Formation Mechanism of Secondary Building Units and Process-Structure-Property Relationships of Metal-Organic Frameworks: The Reproducibility Study of UiO-66 and In-MIL-68
4. Spherical Agglomerates of Poly(ethylene glycol)/Silica Fume Composites as Phase Change Materials
5. 跨族群的日常接觸與異族觀:以當代拉庫拉庫溪下游流域布農人為例
6. 同性戀者自我傷害行為下的關係脈絡與反思
7. Crystal Engineering of Perovskites
8. Reaction Crystallization Kinetics of Dimethyl Fumarate by Anti-Solvent Addition
9. Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Effects of Baffle Configuration and Vessel Size on Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Spherical Agglomerates of Dimethyl Fumarate in a Common Agitated Tank Common Agitated Tank Common Agitated Tank Common Agitated TankCommon Agitated Tank Common Agitated Tank Common Agitated TankCommon
10. Thermal Properties and Structural Characterizations of New Types of Phase Change Material: Anhydrous and Hydrated Palmitic Acid/Camphene Solid Dispersions
11. Preparation and Characterization of Deltamethrin/Syndiotactic Polypropylene Solid Dispersion Based Filaments
12. The Culprit of Gout: Triggering Factors and Formation of Monosodium Urate Monohydrate
13. The Impact of Reaction Crystallization Paths on Filtration, Drying, and Dissolution Behavior for Acetaminophen via In-Process Controls
14. Process Intensification for Pharmaceutical Granules Preparation Using Spherical Agglomeration
15. Antibiotics Recycling of Tetracycline Hydrochloride from Capsule Waste