跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/28 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許惠然
研究生(外文):Huei-ran Syu
論文名稱:合成含胺基酸酯之「無環鳥苷」與「去甲替林」共軛化合物作為抗腸病毒藥劑
論文名稱(外文):Synthesis of Acyclovir–Nortriptyline Conjugates with Amino Acid Ester as Anti-enteroviral Agents
指導教授:胡紀如
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:96
中文關鍵詞:腸病毒胺基酸無環鳥苷去甲替林抗病毒藥劑核醣核酸病毒
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類一直以來需要面對病毒造成的種種疾病,由於許多的病毒目前並沒有適當的藥物和疫苗,導致每年都有數百萬人感染致死,其中又以「核糖核酸病毒」(RNA virus)具有較高的變異性,帶來較嚴重的傷亡,因此如何克服病毒影響人類發展的問題成為了重要課題。
本實驗室參與歐盟「第七架構計畫」下核准之大型跨國計畫Small-molecule Inhibitor Leads versus Emerging and Neglected RNA viruses (SILVER),目的在將「黃病毒科」、「微小核醣核酸病毒科」和「副黏液病毒科」等RNA病毒列為優先研究目標,對其對應藥物進行合成和優化。
過去胡紀如教授實驗室將有抗病毒活性之藥物「無環鳥苷」與「去甲替林」鍵結在一起,所得分子經抗病毒測試後發現對「腸病毒71型」具有良好的抑制活性,因此本人採用此分子架構進行結構修飾,將「無環鳥苷」之羥基與胺基酸鍵結形成酯基作為目標。合成的方法為將含保護之胺基酸藉由耦合試劑「N,N-二環己碳二亞胺」於羧基形成較佳離去基,再和「無環鳥苷」與「去甲替林」共軛化合物進行酯化反應,並將胺基酸上之保護基以「哌啶」去除得到目標產物,並利用「核磁共振光譜儀」及「高解析質譜儀」鑑定其結構。

Virus-related infections pose a serious global threat to human health, causing many human diseases and deaths. Particularly, treatment of RNA viruses lacks effective drugs and vaccines, largely because such viruses mutate rapidly.
The laboratory of Professor Jih Ru Hwu are participating in the European Union’s Seventh Framework Programme. Out project is called, “Small-molecule Inhibitor Leads versus Emerging and Neglected RNA viruses’’ , and focuses on discovering drugs for treating Flaviviridae, Picronviridae, Paramyxoviridae, Alphaviridae, Arenaviridae, Bunyaviridae, Coronaviridae, Noroviridae,and Rhabdoviridae.
Our laboratory has combined two antiviral activity-related drugs together. Experimental results indicate that acyclovir–nortriptyline conjugates inhibit enterovirus replication activity. Correspondingly, this study uses a similar architecture design to molecular structure. This study focuses on acyclovir–nortriptyline conjugates with amino acid esters as the target products. The synthetic method uses coupling reagent N,N’- dicyclohexylcarbodiimide and catalyst 4-(dimethylamino)pyridine react with amino acids, such that the functional group from the amine to better leaving group, and then react with acyclovir derivatives. Finally, a protecting group is removed by piperidine to achieve the final target. The target structures are confirmed by nuclear magnetic resonance spectrometry and high resolution mass spectrometers.

中文摘要 .................................................. i
英文摘要 ................................................. ii
謝誌 ................................................... iii
目錄 ………………………………………………………………............ iv
圖目錄 …………………………………………...........……........ xiv
表目錄 .................................................. xv
縮寫對照表 .............................................. xvi
一、 緒 論 ............................................ 1
二、 結 果 ........................................... 14
2-1 合成含Fmoc保護之Acyclovir–Nortriptyline胺基酸酯共軛化合物(20–23)................................................ 14
2-2 由高解析質譜儀、核磁共振光譜鑑定酯類化合物20之結構..........16
2-3 含Fmoc保護基之Acyclovir–Nortriptyline胺基酸酯共軛化合物20反應的最佳化合成條件...................................... .. 20
2-4 合成Acyclovir–Nortriptyline胺基酸酯共軛化合物 (24–27)… 20
2-5 利用UV-VIS測定胺基酸酯共軛化合物之水溶性................. 21
2-6 利用UV-VIS測定胺基酸酯共軛化合物之脂溶性................. 22
三、 討 論............................................ 23
3-1 探討含保護基之胺基酸與「無環鳥苷」衍生物反應的最佳化合成條件.. 23
3-2 探討胺基酸保護基的選擇................................. 24
3-3 探討含保護基之胺基酸與「無環鳥苷」衍生物反應的合成步驟....... 26
3-4 由Lipinski’s rule探討化合物之藥物開發能力.............. 27
3-5 探討胺基酸酯共軛化合物之水溶性及其藥物開發能力............. 29
3-6 探討胺基酸酯共軛化合物之脂溶性及其藥物開發能力............. 30
四、 結 論 ........................................... 31
五、 實 驗 部 分(Experimental Section) ............... 32
9-(2-[N-(9-Fluorenylmethoxycarbonyl)-L-valyl]oxyethyloxymethyl)-N2- [N-methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene) prop-1-carbamoyl]guanine (20).....................................................34
9-(2-[N-(9-Fluorenylmethoxycarbonyl)-L-phenylalanyl]oxyethyloxyme- thyl)-N2-[N-methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-
ylidene)prop-1-carbamoyl]guanine (21)................... 35
9-(2-[N-(9-Fluorenylmethoxycarbonyl)-L-prolyl]oxyethyloxymethyl)-N2- [N-methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene) prop-1-carbamoyl]guanine (22).................................................... 36
N2-[N-Methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)
prop-1-carbamoyl]-9-[2-(L-valyl)oxyethyloxymethyl]-
guanine (24)........................................... 38
N2-[N-Methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)
prop-1-carbamoyl]-9-[2-(L-phenylalanyl)oxyethyloxymethyl]-
guanine (25)........................................... 39
N2-[N-Methyl-3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)
prop-1-carbamoyl]-9-[2-(L-prolyl)oxyethyloxymethyl]-
guanine (26)........................................... 40
六、 參 考 文 獻 ..................................... 44
七、 光 譜 .......................................... 50

1. Neyts, J.; Leyssen, P.; De Clercq, E. Molecular strategies to inhibit the replication of RNA viruses. Antiviral Res. 2008, 78, 9–25.
2. Seventh Framework Programme home page. http://cordis.europa.eu/fp7/home_en.html
3. Sanjuan, R.; Elena, S. F. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 2005, 79, 11555–11558.
4. Oberste, M. S.; Maher, K.; Kilpatrick, D. R.; Pallansch, M. A. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 1999, 73, 1941–1948.
5. Ke, Y.-Y.; Lin, T.-H. Modeling the ligand-receptor interaction for a series of inhibitors of the capsid protein of enterovirus 71 using several three-dimensional quantitative structure-activity relationship techniques. J. Med. Chem. 2006, 49, 4517–4525.
6. Oberste, M. S.; Maher, K.; Brown, B. A. Typing of human enteroviruses by partial sequencing of VP1. Clin. Microbiol. 1999, 37, 1288–1293.
7. Schmidt, N. J.; Lennette, E. H.; Ho, H. H. An apparently new enterovirus isolated from
patients with disease of the central nervous system. J. Infect. Dis. 1974, 129, 304–309.
8. McMinn, P.; Lindsay, K.; Perera, D.; Chan, H. M.; Chan, K. P.; Cardosa, M. J. Human Enterovirus 71 disease in Sarawak, Malaysia: a prospective clinical, virological, and molecular epidemiological study. Lancet. Infect. Dis. 2007, 44, 646–656.
9. Solomon, T.; Ooi, M. H.; Perera, D. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet. Infect. 2010, 10, 778–790.
10. Lee, M. S.; Tseng, F. C.; Wang, J. R.; Chi, C. Y. Challenges to licensure of enterovirus 71 vaccines. Negl. Trop. Dis. 2012, 6, 1737–1743.
11. Ooi, H. M.; Wong, S. C.; Podin, Y.; Akin, W.; Perera, D. Human rnterovirus 71 disease in Sarawak, Malaysia: A Prospective Clinical, Virological, and Molecular Epidemiological Study. Clin. Infect. Dis. 2007, 44, 646–656.
12. McMinn, P. C. An overview of the evolution of enterovirus 71 and its clinical and public health significance. Microbiol. Rev. 2002, 26, 91–107.
13. Wu, C.-Y.; Wang, H.-C.; Wang, K.-T.; Weng, S.-C.; Chang, W.-H.; Shih, D. Y.-C.; Lo,
C.-F.; Wang, D.-Y. Neutralization of five subgenotypes of enterovirus 71 by Taiwanese human plasma and Taiwanese plasma derived intravenous immunoglobulin. Biologicals 2013, 41, 154–157.
14. McMinn, P. C. Recent advances in the molecular epidemiology and control of human enterovirus 71 infection. Curr. Opin. Virol. 2012, 2, 199–205.
15. Huang, M.-L.; Chiang, P.-S.; Chia, M.-Y.; Luo, S.-T.; Chang, L.-Y.; Lin, T.-Y.;
Ho, M.-S.; Lee, M.-S. Cross-reactive neutralizing antibody responses to enterovirus 71 infections in young children: implications for vaccine development. PLoS Negl. Trop. Dis. 2013, 7, 1–9.
16. Tee, K. K.; Chan, Y. F.; Bible, J. M.; Evolutionary genetics of human enterovirus 71: origin, population dynamics, natural selection, and seasonal periodicityof the VP1 gene. J. Virol. 2010, 7, 3339–3350.
17. Wong, S.; Solomon, T. Clinical features, diagnosis, and management ofenterovirus 71. Neurol.Rev .2010, 9, 1097–1105.
18. Lin, T.-Y.; Twu, S.-J.; Ho, M.-S.; Chang, L.-Y.; Lee, C.-Y. Enterovirus 71 outbreaks, Taiwan:occurrence and recognition. Emerging Infectious Diseases. 2003, 9, 291–293.
19. Hsueh, C.; Jung, S.-M.; Shin, S.-R; Kuo, T.-T.; Shieh, W.-J.; Zaki, S.; Lin, T.-Y.; Chang, L.-Y.; Ning, H.-C.; Yen, D. Acute encephalomyelitis during an outbreak of enterovirus type 71 infection in Taiwan: report of an autopsy case with pathologic, immunofluorescence, and molecular studies. Modern Patholog. 2000, 13,1200–1205.
20. Ooi, M. H.; Wong, S. C.; Podin, D.; Podin, Y. Identification and validation of clinical predictors for the risk of neurological involvement in children with hand, foot, and mouth disease in Sarawak. Infet. Dis. 2009, 9, 1471–1483.
21. Solomon, T.; Lewthwaite, P.;Perera, D. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet. Infect. Dis. 2010, 10, 778–790.
22. Pourianfar, H. R.; Grollo, L. Development of antiviral agents toward enterovirus 71 infection. J. Microbiol. Immunol. Infect. 2013, 97, 1–8.
23. Tan, C. W.; Lai, K. F.; Sam, I. C.; Chan, W. F. Recent developments in antiviral agents against enterovirus 71 infection. J. Biomed. Sci. 2014, 21, 14.
24. Arita, M.; Wakita, T.; Shimizu, H. Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity. J. Gen. Virol. 2008, 89, 2518–2530.
25. Arita, M.; Takebe, Y.; Wakita1, T.; Shimizu1, H. A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. J. Gen. Virol. 2010, 91, 2734–2744.
26. Hwu, J. R.; Lin, S.-Y.; Tsay, S.-C.; Clercq, E. D.; Leyssen, P.; Neyts, J. Coumarin-purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem. 2011, 54, 2114–2126.
27. Pub.Chem. Database. http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?cid=4543
28. Bacon, T. H.; Levin, M. J.; Leary, J. J.; Sarisky, R. T.; Sutton, D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy two decades of antiviral therapy. Clin. Microbiol. Rev. 2003, 16, 114–128.
29. Aleiwi, B. A.; Schneider, C. M.; Kurosu, M. Synthesis of ureidomuraymycidine derivatives for structure−activity relationship studies of muraymycins. J. Org. Chem. 2012, 77, 3859−3867.
30. Kaloudis, P.; Paris, C.; Vrantza, D.; Encinas, S.; Perez-Ruiz, R.; Miranda, M. A.; Gimisis, T. Photolabile N-hydroxypyrid-2(1H)-one derivatives of guanine nucleosides: a new method for independent guanine radical generation. Org. Biomol. Chem. 2009, 7, 4965–4972.
31. Park, T.; Todd, E. M.; Nakashima S.; Zimmerman S. C. A quadruply hydrogen bonded heterocomplex displaying high-fidelity recognition. J. Am. Chem. Soc. 2005, 127, 18133–18142.
32. Schiff, G. M.; Sherwood, J. R. Clinical activity of pleconaril in an experimentally induced coxsackievirus A21 respiratory infection. J. Infect. Dis. 2000, 181, 20–26.
33. Wang, J.; Ma, C.; Wu, Y.; Lamb, R. A.; Pinto, L. H.; DeGrado, W. F. Exploring organosilane amines as potent inhibitors and structural probes of influenza A virus M2 proton channel. J. Am. Chem. Soc. 2011, 133, 13844–1384.
34. Mitsuya, H.; Weinhold, K. J.; Furman, P. A.; Clair, M.; Lehrman, S. N.; Gallo, R. C.; Bolognesi, D.; Barry, D. W.; Broder, S. 3'-Azido-3'-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl Acad. Sci. USA. 1985, 82, 7096–7100.
35. Dohnalek, J.; Hasek, J.; Duskova, J.; Petrokova, H. Hydroxyethylamine isostere of an HIV-1 protease inhibitor prefers its amine to the hydroxy group in binding to catalytic aspartates. A synchrotron study of HIV-1 protease in complex with a peptidomimetic inhibitor. J. Med. Chem. 2002, 45, 1432-1438.
36. Clercq, E. D. Antiviral drugs in current clinical use. J. Clin. Virol. 2004, 30, 115– 133.
37. Beauchamp, L. M.; Orr, G. F.; Miranda, P. de; Burnette, T.; Krenitsky, T. A. Amino acid ester prodrugs of acyclovir. Antivir. Chem. Chemoth. 1992, 3, 157–164.
38. Shargel, L.; Yu, A.B. Applied biopharmaceutics &; pharmacokinetics 4th ed. New York:
McGraw-Hill. 1999.
39. Fasinu, P.; Pillay, V.; Ndesendo, V. M. K.; Toit, L. C.; Choonara, Y. E. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm. Drug Dispos. 2011, 32, 185–209.
40. Adibi, S. A. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology, 1997, 113, 332–340.
41. Han,H.; de Vrueh, R. L.; Rhie, J. K.; Covitz, K. M.; Smith, P. L.; Lee, C. P.; Oh, D. M.; Sadée, W.; Amidon, G. L. 5'-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res. 1998, 15, 1154–1159.
42. Carpino, L. A.; Han, G. Y. The 9-fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem. 1972, 37, 3404−3409.
43. Nashed, Y. E.; Mitra, A. K. Synthesis and characterization of novel dipeptide ester prodrugs of acyclovir. Spectrochim. Acta A. 2003, 59, 2033–2039.
44. Ishikawa, M.; Hashimoto, Y. Improvement in aqueous solubility in small molecule drug discoveryprograms by disruption of molecular planarity and symmetry. J. Med. Chem. 2011, 54, 1539–1554.
45. Kraszni, M.; Banyai, I.; Noszal, B. Determination of conformer-specific Partition coefficients in octanol/water. J. Med. Chem. 2003, 46, 2241–2245.
46. Lipinski,C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliver. Rev. 1997, 23, 3-25.
47. Sofia, M.J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P.G.; Ross, B.S.; Wang, P.; Zhang, H.R.; Bansal, S.; Espiritu, C.; Keilman, M.; Lam, A.M.; Steuer, H.M.; Niu, C.; Otto, M.J.; Furman, P.A. Discovery of a β-d-2'-deoxy-2'- α-fluoro-2'-β- C- methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J. Med. Chem. 2010, 53, 7202–7218.
48. Gane, E.J.; Stedman, C.A.; Hyland, R.H.; Ding, X.; Svarovskaia, E.; Symonds, W.T.; Hindes, R.G.; Berrey, M.M. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 2013, 368, 34–44.
49. Li, F.; Maag, H.; Alfredson, T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J. Pharm. Sci. 2008, 97, 1109–1134.
50. Clercq, E.D.; Field, H. J. Antiviral prodrugs – the development of successful prodrug strategies for antiviral chemotherapy. Br. J. Pharmacol. 2006, 147, 1–11.
51. Smith, D. A.; Beaumont, K.; Walker, D. K.; van de Waterbeemd, H. Property-based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem. 2001, 44, 1313–1333.
52. Bookser, B. C.; Ugarkar, B. G.; Matelich, M. C.; Lemus, R. H.; Allan, M.; Tsuchiya, M.; Nakane, M.; Nagahisa, A.; Wiesner, J. B.; Erion, M. D. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-β-D-ribofuranosyl)pyrrolo[2,3-d] pyrimidines substituted at C4 with glycinamides and related compounds. J. Med. Chem. 2005, 48, 7808–7820.
53. Roiter, Y. et al. Interaction of lipid membrane with nanostructured surfaces. Langmuir, 2009, 25, 6287–6299.
54. Kerns, E. H.; Di, L. Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization.; Elsevier: NewYork, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top