跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉德揚
研究生(外文):Te-yang Yeh
論文名稱:利用多點震源地震矩張量逆推技術快速分析大地震之破裂過程
論文名稱(外文):Application of Multiple-source Moment Tensor Analysis to Real-time Detection and Characterization of Large Earthquake
指導教授:李憲忠李憲忠引用關係馬國鳳馬國鳳引用關係
指導教授(外文):Shiann-jong LeeKuo-fong Ma
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球科學學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:104
中文關鍵詞:即時監測系統震源機制震源破裂過程波形逆推
外文關鍵詞:real-time monitoringfocal mechanismrupture processwaveform inversion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據先前的研究顯示台灣區域之中小規模(Mw < 6.5)地震的點震源參數可以藉由線上即時監測系統(Real-time Moment Tensor, RMT)獲得。此方法是利用預先計算好之格林函數資料庫進行長週期(10 – 50 s)寬頻即時訊號連續逆推,結合格點搜尋方法,可以同時獲得震源位置、時間以及地震矩張量。此方法不需等待氣象局發布快速地震測報資訊,在實際應用上相當有效率。然而,點震源為極簡單之震源描述,在面對破裂過程複雜之大地震的同時可能面對系統無法完整描述震源破裂的問題。在本研究中提出了一個結合了多頻段RMT系統和多點震源地震矩逆推技術的研究流程,同時即時監測大地震,並快速分析其震源破裂之特性。多頻段RMT系統目前於離線測試當中,其中包含了四個子系統,每個子系統的頻段參數設定適用於不同的規模範圍。利用此系統,可以即時得到不同規模之地震的點震源參數。點震源參數得到之後,更詳細之破裂過程可以經由多點震源地震矩張量逆推技術來分析。此技術可偵測震源破裂過程中貢獻震源滑移較大的子事件,藉此快速掌握初步震源破裂之特性。為了檢測系統的可靠性,本研究方法除了經過理論波形測試之外,另於台灣和日本地區發生的顯著中大地震中選出六筆地震事件做為離線測試,並將得到的震源模型和有限斷層模型比較。結果顯示,利用本研究提出之方法得到的震源模型和有限斷層模型在空間和時間上是相吻合的。值得注意的是,利用了即時的資料和快速分析得到之結果,對於大地震後的災後應變(地震,海嘯災害)可以提供更精確的參考資訊。
It is shown that point-source parameters of events of small-to-moderate sizes (Mw<6.5) can be automatically determined by the Real-time Moment Tensor monitoring system (RMT) in Taiwan. The RMT system continuously inverts long-period (10-50s) wave field with a pre-calculated grid-based Green’s function database. This efficient approach tremendously reduces the time lag between event detection and focal mechanism determination. However, large earthquakes may distort the point-source assumption due to the frequency band. To derive stable point-source parameters of large earthquakes, the multiple-frequency bands RMT system was implemented. Each sub-system of the multiple-frequency bands RMT systems is specifically designed to estimate stable moment tensor solutions for earthquakes in a given magnitude range. Besides point-source parameters, dominant attributes of rupture processes can be analyzed using a multiple-source moment tensor inversion technique. The multiple-source analysis determines significant sub-events which account for large seismic moment during source ruptures (i.e. asperity).
A procedure combining the multiple-frequency bands RMT system and the multiple-source moment tensor analysis is proposed. Some significant earthquakes in Taiwan and Japan are analyzed using the proposed approach as real-event exercises. The multiple-source model yields simple and robust determination of complex seismic source features. The characterized sub-events are in good agreement with asperities demonstrated in finite-fault models. By taking advantage of real-time determination of overall rupture processes, this approach can provide reliable assessments of associated hazards.

Chinese abstract………………………………………………………………………………...i
English Abstract………………………………………………………………………………ii
Acknowledgements……………………………………………………………………………iii
List of contents………………………………………………………………………………iv
List of table and figures……………………………………………………………………...vii
Chapter 1: Introduction………………………………………………………………………...1
1.1 General overview...…………………………………………………………………...1
1.2 Point-source moment tensor inversion…..……………………………………………2
1.2.1 Typical moment tensor inversion scheme…………………………………...2
1.2.2 Grid-search scheme……………………………………………………….…4
1.3 Multiple-source moment tensor inversion…………………………………………..5
1.4 The following chapters…………………………………...……………………….…..6
Chapter 2: Point-source and Multiple-source Seismic Moment Tensor Inversion…………...11
2.1 Overview……………………………………………………………………………11
2.2 Moment tensor inversion……………………………………...…………………….12
2.2.1 Representation of seismic source……………………………..……………12
2.2.2 Moment tensor determination…..…...……………………………….…….14
2.2.3 Decomposition of seismic moment tensor….…………………….....……..15
2.2.4 Waveform misfit…….……………………………………………………17
2.3 Point-source inversion scheme……………………………………………..............18
2.3.1 Grid-search scheme………………………………………………………...19
2.3.2 Multiple-frequency bands RMT system….………………………………...20
2.4 Multiple-source moment tensor inversion…………………………………………22
2.4.1 Passband selection for the multiple-source analysis……………………….23
2.4.2 Sub-event determination…………………………………………………24
2.5 System parameters………………………………………………………………...25
2.5.1 Green’s function database………………………………………………….25
2.5.2 Green’s function computation……………………………………………26
2.5.3 Grid systems and Green’s functions for events in Taiwan………………....26
2.5.4 Grid systems and Green’s functions for events in Japan..………………....27
2.6 Synthetic test………………………………………………………………………28
2.6.1 Settings of source rupture model…………………………………………28
2.6.2 Green’s function database and synthetic waveforms………………………29
2.6.3 Inversion and results……………………………………………………….30
Chapter 3: Multiple-source Determination for Recent Large Earthquakes in Taiwan and
Japan…………………………………………………………………………………………..51
3.1 Overview……………………………….....………………………………................51
3.2 Earthquakes in Taiwan……………………………………………………................51
3.2.1 The 2003 Mw 6.8 Chengkung earthquake…………………………………….51
3.2.2 The 2002 Mw 7.1 Hualien earthquake………………………………………...53
3.2.3 Multiple-source analysis of the 1999 Mw 7.6 Chi-Chi earthquake…………...54
3.3 Earthquakes in Japan……………………………………………….………………..55
3.3.1 The 2011 Tohoku-Oki Mw 7.3 foreshock……………………………………..56
3.3.2 The 2011 Tohoku-Oki Mw 9.1 mainshock………………….…………………57
3.3.3 The 2011 Tohoku-Oki Mw 7.9 aftershock…………………………………….59
Chapter 4: Discussions…………………………………………………………….………….75
4.1 Model validation…………………………………………………………………….75
4.2 Clipping problem…………..…………………………………………….………….77
4.3 System response times...……………………………………………….……………77
Chapter 5: Conclusion and future works……………………………………….……………..82
Bibliography...………………………………………………………………………………...84
Aki, K., &; Richards, P. G., Quantitative seismology., University Science Books, 2002.
Aster, R. C., Borchers, B., &; Thurber, C. H., Parameter estimation and inverse problems., Academic Press, 2013.
Barker, J. S., &; Langston, C. A., 1982. Moment tensor inversion of complex earthquakes. Geophys. J. Int., 68(3), 777-803.
Blaser, L., Krüger, F., Ohrnberger, M., &; Scherbaum, F., 2010. Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull. seism. Soc. Am., 100(6), 2914-2926.
Chen, Y. L. &; Shin, T. C., 1998. Study of the earthquake location of 3-D velocity structure in Taiwan area, Meteor. Bull., 42, 135–169.
Ching, K. E., Rau, R. J., &; Zeng, Y., 2007. Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements. J. Geophys. Res.,112(B6).
Dreger, D. S., &; Helmberger, D. V., 1993. Determination of source parameters at regional distances with three‐component sparse network data. J. Geophys. Res., 98(B5), 8107-8125.
Dreger, D. S., Tkalčić, H., &; Johnston, M., 2000. Dilational processes accompanying earthquakes in the Long Valley Caldera. Science, 288(5463), 122-125
Duputel, Z., Kanamori, H., Tsai, V. C., Rivera, L., Meng, L., Ampuero, J. P., &; Stock, J. M., 2012. The 2012 Sumatra great earthquake sequence. Earth Planet. Sci. Lett., 351, 247-257.
Duputel, Z., Rivera, L., Kanamori, H., Hayes, G. P., Hirshorn, B., &; Weinstein, S., 2011. Real-time W phase inversion during the 2011 off the Pacific coast of Tohoku Earthquake. Earth, planets and space, 63(7), 535-539.
Duputel, Z., Tsai, V. C., Rivera, L., &; Kanamori, H., 2013. Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics. Earth Planet. Sci. Lett., 374, 92-100.
Dziewonski, A. M., Chou, T. A., &; Woodhouse, J. H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86(B4), 2825-2852.
Ekström, G., &; Engdahl, E. R., 1989. Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska. J. Geophys. Res., 94(B11), 15499-15519.
Ekström, G., Dziewoński, A. M., Maternovskaya, N. N., &; Nettles, M., 2005. Global seismicity of 2003: Centroid–moment-tensor solutions for 1087 earthquakes. Phys. Earth Planet. Inter., 148(2), 327-351.
Fitch, T. J., McCowan, D. W., &; Shields, M. W., 1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes. J. Geophys. Res., 85(B7), 3817-3828.
Fukuyama, E., M. Ishida, D. S. Dreger &; H. Kawai, 1998, Automated seismic moment tensor determination by using on-line broadband seismic waveforms, Zisin, 149-156 (in Japanese with English abstract).
Gilbert, F., 1970. Excitation of lhe normal modes of the earth by earthquake sources Geophys. J. R. Astr. Soc. 22,223-226.
Guilhem, A., &; Dreger, D. S., 2011. Rapid detection and characterization of large earthquakes using quasi‐finite‐source Green's functions in continuous moment tensor inversion. Geophys. Res. Lett., 38(13).
Hashimoto, C., Noda, A., Sagiya, T., &; Matsu’ura, M., 2009. Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion. Nature Geoscience, 2(2), 141-144.
Hsu, Y. J., Ando, M., Yu, S. B., &; Simons, M., 2012. The potential for a great earthquake along the southernmost Ryukyu subduction zone. Geophys. Res. Lett., 39(14).
Hsu, Y. J., Yu, S. B., &; Chen, H. Y., 2009. Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake.Geophys. J. Int., 176(2), 420-430.
Hu, J. C., Cheng, L. W., Chen, H. Y., Wu, Y. M., Lee, J. C., Chen, Y. G., Lin, K. C., Rau, R. J., Hao, K. C., Chen, H. H., Yu, S. B., &; Angelier, J., 2007. Coseismic deformation revealed by inversion of strong motion and GPS data: the 2003 Chengkung earthquake in eastern Taiwan. Geophys. J. Int., 169(2), 667-674.
Ji, C., Helmberger, D. V., Song, T. R., Ma, K. F., &; Wald, D. J., 2001, Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 28(23), 4379– 4382.
Jost, M. U. &; Herrmann, R. B., 1989. A student’s guide to and review of moment tensors. Seismol. Res. Lett., 60(2), 37-57.
Kanamori, H. &; Rivera, L., 2008. Source inversion of W phase: speeding up seismic tsunami warning. Geophys. J. Int., 175(1), 222-238.
Kanamori, H., 2005. Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci., 33, 195-214.
Kao, H. &; Jian, P. R., 2001. Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data, Tectonophysics, 333, 179–198.
Kao, H., &; Jian, P. R., 2001. Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data. Tectonophysics, 333(1), 179-198.
Kao, H., Jian, P. R., Ma, K. F., Huang, B. S. &; Liu, C. C., 1998. Moment tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision, Geophys. Res. Lett., 25, 3619–3622.
Kao, H., Liu, Y. H., Liang, W. T. &; Chen, W. P., 2002. Source parameters of regional earthquakes in Taiwan: 1999–2000 including the Chi-Chi earthquake sequence, Terr. Atmos. Ocean. Sci., 13, 279–298.
Kawakatsu, H., 1998. On the realtime monitoring of the long-period seismic wavefield, Bull. Earthq. Res. Inst., 73, 267–274.
Kikuchi, M., &; Kanamori, H., 1982. Inversion of complex body waves. Bull. seism. Soc. Am., 72(2), 491-506.
Kikuchi, M., &; Kanamori, H., 1986. Inversion of complex body waves-II. Phys. Earth Planet. Inter., 43(3), 205-222.
Kikuchi, M., &; Kanamori, H., 1991. Inversion of complex body waves—III. Bull. seism. Soc. Am., 81(6), 2335-2350.
Knopoff, L., &; Randall, M. J., 1970. The compensated linear‐vector dipole: A possible mechanism for deep earthquakes. J. Geophys. Res.,75(26), 4957-4963.
Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S. I., Satake, K., Fujii, Y., Miyake, H., Sakai, S., Yamanaka, Y., &; Okada, T. (2011). A unified source model for the 2011 Tohoku earthquake. Earth Planet. Sci. Lett., 310(3), 480-487.
Komatitsch, D., &; Tromp, J., 1999. Introduction to the spectral element method for three‐dimensional seismic wave propagation. Geophys. J. Int., 139(3), 806-822.
Lee, S. J., and K. F. Ma, 2000, Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the inversion of teleseismic data, Terr. Atmos. Oceanic Sci., 11, 591– 608.
Lee, S. J., Huang, B. S., Ando, M., Chiu, H. C., &; Wang, J. H., 2011. Evidence of large scale repeating slip during the 2011 Tohoku‐Oki earthquake.Geophys. Res. Lett., 38(19).
Lee, S. J., Liang, W. T., Cheng, H. W., Tu, F. S., Ma, K. F., Tsuruoka, H., Kawakatsu, H., Huang, B. S., &; Liu, C. C., 2014. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan. Geophys. J. Int., 196(1), 432-446.
Lee, S. J., Liu, Q., Tromp, J., Komatitsch, D., Liang, W. T., &; Huang, B. S., 2014. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes. J. Asian Earth Sci., 87, 56-68.
Lee, S. J., Ma, K. F., &; Chen, H. W., 2006. Three‐dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi‐Chi, Taiwan, earthquake. J. Geophys. Res.,111(B11).
Liang, W. T., Liu, Y. H. &; Kao, H., 2003. Source parameters of regional earthquakes in Taiwan: January-December, 2001, Terr. Atmos. Ocean. Sci., 14, 249–260.
Liang, W. T., Liu, Y. H. &; Kao, H., 2004. Source parameters of regional earthquakes in Taiwan: January-December, 2002, Terr. Atmos. Ocean. Sci., 15, 727–741.
Ma, K. F., C. T. Lee, Y. B. Tsai, T. C. Shin, &; J. Mori, 1999, The Chi-Chi Taiwan earthquake: Large surface displacements on an inland thrust fault, Eos Trans. AGU, 80, 605, 611.
Menke, W., Geophysical data analysis: discrete inverse theory., Academic press, (2012).
Moore, E. H.. On the reciprocal of the general algebraic matrix, 1920. Bulletin of the American Mathematical Society, 26,394–395.
Mozziconacci, L., Delouis, B., Angelier, J., Hu, J. C., &; Huang, B. S., 2009. Slip distribution on a thrust fault at a plate boundary: The 2003 Chengkung earthquake, Taiwan. Geophys. J. Int., 177(2), 609-623.
Saito, T., &; Furumura, T., 2009. Three‐dimensional tsunami generation simulation due to sea‐bottom deformation and its interpretation based on the linear theory. Geophys. J. Int., 178(2), 877-888.
Sambridge, M., 1999. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int., 138(2), 479-494.
Shearer, P. M., Introduction to seismology., Cambridge University Press, 2009.
Shyu, J. B. H., Sieh, K., Chen, Y. G., &; Liu, C. S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Res., 110(B8).
Tsai, V. C., Nettles, M., Ekström, G., &; Dziewonski, A. M., 2005. Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys. Res. Lett., 32(17).
Tsuruoka, H., Kawakatsu, H., &; Urabe, T., 2009. GRiD MT (grid-based real-time determination of moment tensors) monitoring the long-period seismic wavefield. Phys. Earth Planet. Inter., 175(1), 8-16.
Wallace, T. C., Helmberger, D. V. &; Mellman, G. R., 1981. A technique for the inversion of regional data in source parameter studies, J. geophys. Res., 86, 1679–1685.
Wang, D., &; Mori, J., 2011. Rupture process of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) as imaged with back-projection of teleseismic P-waves. Earth Planets and Space, 63(7), 603.
Wei, S., Graves, R., Helmberger, D., Avouac, J. P., &; Jiang, J., 2012. Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth Planet. Sci. Lett., 333, 91-100.
Yen, Y. T., &; Ma, K. F., 2011. Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan.Bull. seism. Soc. Am., 101(2), 464-481.
Zhan, Z., Kanamori, H., Tsai, V. C., Helmberger, D. V., &; Wei, S., 2014. Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth Planet. Sci. Lett., 385, 89-96.
Zhu, L., &; Ben-Zion, Y., 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data. Geophys. J. Int., 194(2), 839-843.
Zhu, L., &; Rivera, L. A., 2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int.,148(3), 619-627.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top