跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/26 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳儀安
研究生(外文):Yi-an Chen
論文名稱:使用化學沉澱法合成新式導質子型固態氧 化物燃料電池陰極材料Ba0.5Sr0.5Fe1-xCuxO3-δ
論文名稱(外文):Synthesis of Novel Cathode Materials Ba0.5Sr0.5Fe1-xCuxO3-δ for P-SOFC by Chemical Precipitation Method
指導教授:林景崎
指導教授(外文):J. C. Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:113
中文關鍵詞:固態氧化物燃料電池化學沉澱法陰極
外文關鍵詞:SOFCChemical precipitationcathode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用化學沉澱法,製作適用於導氫型固態燃料電池陰極材料Ba0.5Sr0.5Fe1-XCuXO3-δ的先驅物,進而煆燒獲得氧化物粉體,實驗時,經由調配藥品比例,經由調整滴定pH值,前驅粉體的煆燒溫度等因素,研究其結晶性質、表面形貌、熱性質分析、電化學性質等,以評估其作為導質子型固態氧化物燃料電池陰極的可行性。實驗結果顯示唯有在特定之pH值下,其煆燒過後之產物才會形成特定化學劑量比之Ba0.5Sr0.5Fe1-XCuXO3-δ鈣鈦礦型結構,由X光繞射分析儀(XRD)得知,當銅的添加量為0.3以下時,煆燒過後之XRD繞射圖顯示其產物為純的鈣鈦礦結構,但當銅的添加量大於0.4時則開始出現二次相;而隨著Cu添加量增加,氧化物各個繞射訊號皆往低角度偏移,此乃Cu的原子尺寸較Fe大所造成,利用掃描式電子顯微鏡(SEM)觀察其形貌為多孔性結構,隨著煆燒溫度的增加,固體顆粒明顯增大,部分顆粒間介面消失,孔隙度減少,在材料導電度方面銅的添加量為0.2的條件下導電度達最高94.3 S/cm。
Precipitation of carbonates was used to prepare the precursor of Ba0.5Sr0.5Fe1-xCuxO3-δ, which was the potential material for making of the cathode used in the proton-conducting solid oxide fuel cells. In the precipitation process, a solution of nitrates was reacted with the saturated solution of ammonium carbonate by controlling the pH, After filtration,the precipitate was dried and calcined in a furnace controlled at 800, 850, 900, 950, 1000˚C 2 hr to form the oxide. The effects of stoichiometric ratio between Fe/Cu and calcination temperature on the morphology, crystalline structure of the catalysts and cathodic behavior used in P-SOFC were of interest. Examination through field emission scanning electron microscope (FE-SEM) equipped with energy dispersive x-ray analysis (EDS), we could compare the morphology and composition for the powders. Analysis by x-ray diffraction (XRD), we could distinguish the crystal structures. The gravimetrical and thermal properties of various precursors in calcination process were determined by thermal gravimetrical analysis (TGA) and Differential Scanning Calorimeter (DSC). After making the calcined oxides as the cathode catalysts in a single cell, I-V polarization test were conducted to evaluate the electrochemical performance. The result showed that Pure perovskite structure were observed in X-ray diffraction (XRD) measurement with Cu-dopping at X = 0.1 to 0.3. The porosity was determined to be 36.4% by means of Archimedes method.The electrical conductivity of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ reaches the maximum value of 94.3 S/cm at 450 °C,
Preliminary results demonstrate that the cobalt-free oxide Ba0.5Sr0.5Fe1-XCuXO3-δ is a very promising cathode material for application in P -SOFC.
摘要 ................................ i
Abstract ........................... ii
致謝 ................................ iii
目錄 ................................ iv
表目錄 ............................... viii
圖目錄 ............................... ix
第一章 緒論 ........................... 1
1-1 前言 ............................. 1
1-2 研究動機與目的...................... 4
第二章 原理與文獻回顧.................... 8
2-1固態氧化物燃料電池(SOFC)簡介......... 8
2-2固態氧化物燃料電池工作原理............. 9
2-3固態氧化物燃料電池之極化現象........... 11
2-4質子傳導型固態氧化物燃料電池之材料性質... 13
2-4-1 陽極材料........................ 13
2-4-2 電解質材料....................... 14
2-4-3 陰極材料......................... 15
2-4-4 陰極材料結構...................... 16
2-5固態氧化物燃料電池裝置類型與支撐結構..... 19
2-6固態氧化物電池材料常用合成法............ 20
2-7文獻回顧............................ 24
2-7-1 SOFC 陰極材料文獻回顧.............. 24
2-7-2 電化學交流阻抗文獻回顧.............. 25
第三章 實驗方法.......................... 28
3-1 實驗藥品與材料....................... 28
3-2 實驗製備與流程....................... 28
3-2-1 BSCF 陰極粉末製備.................. 28
3-2-2 塊材成型與燒結..................... 29
3-2-3 陰極膏製備......................... 29
3-2-4 全電池製備......................... 30
3-3 材料性質分析.......................... 31
3-3-1 X光繞射儀(X-Ray Diffractormeter, XRD).. 31
3-3-2 掃描式電子顯微鏡(SEM) 與能量散射光譜儀(EDS).. 32
3-3-3 熱性質分析儀(TGA、DSC)............. 32
3-3-4 感應耦合電漿質譜分析儀(ICP-MS........ 33
3-3-5 孔隙率量測......................... 34
3-3-6 電導率量測 ........................ 35
第四章 研究結果 .......................... 36
4-1 鈣鈦礦容忍因子........................ 36
4-2 前驅溶液滴定結果...................... 36
4-3 陰極粉體之 XRD分析.................... 37
4-4 SEM表面分析.......................... 39
4-4-1 陰極粉體表面形貌..................... 39
4-4-2 全電池陰極表面與斷面形貌............... 40
4-5 EDS半定量分........................... 41
4-6 ICP-MS 分析.......................... 41
4-7 粉末熱重分析........................... 41
4-8 熱式差掃描分析......................... 42
4-9 材料電導率分析......................... 42
4-10 孔隙率量測........................... 42
4-11 直流電極化曲線(IV&;IP Curve)分析........ 43
第五章 討論 .............................. 44
5-1 改變滴定pH值之探討..................... 44
5-2 改變添加銅含量之探討.................... 45
5-3 改變煆燒溫度的探討...................... 47
5-4 改變分散劑含量的探討.................... 48
5-5 陰極粉體煆燒過程的探討................... 48
5-6 電導率的探討........................... 49
第六章 結論................................ 51
第七章 參考文獻..............................53
[1] W.R.Grove, Phil. Mag. Ser, 3, 127, 1839.
[2] Heinzel, Journal Electrochem. Soc, 116,1124, 1969.
[3] 衣寶廉,燃料電池-原理與應用,2005.
[4] http://www.lme.com/en-gb/pricing-and-data/
[5] T.Fukui, S.Ohara, K.Murata, H.Yoshida, K.Miura and T.Inagaki, Journal of Power Sources, 106, 142, 2002.
[6] N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada and M. Dokiya, Journal of Electrochem. Soc., 147, 3178-3182, 2000.
[7] J. Fleig, J. Power Sources, 105, 228-238 ,2002.
[8] P. J. Gellings and H. J. M. Bouwmeester,The CRC Handbook of Solid State Electrochemistry, Chapter 12, CRC Press, Florida, 413-418 , 1997.
[9] B. C. H. Steele, Solid State Ionics, 129, 95-110, 2000.
[10] Z. P. Shao and S. M. Haile, Nature, 431, 170-173, 2004.
[11] FS Baumann, J Fleig, HU Habermeier, J Maier,Solid State Ionics 177,
3187-3191, 2006.
[12] E Bucher, A Egger, P Ried, W Sitte, P Holtappels, solid state
Ionics, 179, 1032-1035, 2008
[13] W Lai, S M Haile, Phys. Chem. Chem. Phys.,10,865-883,2008.
[14] B Wei, Z Lu, XQ Huang, ML Liu, N Li, WH Su., Journal of Power
Sources, 176, 1–8, 2008;.
[15] H.H. Wang, C Tablet, A Feldhoff, J Caro., Advanced Materials; 17,1785–8,2005
[16] J. I. Jung, S T Misture, D D Edwards, J. Electroceramis, 24: 261-269,
2008.
[17] Y. T. Lin, National Taipei University of Technology, 2009.
[18] M. C. Wiliams,“Solid oxide fuel cell:Fundamentals to system”, Fuel
ell, 78-85, 2007.
[19] Z. H. Zeng, National Central University, 2012.
[20] J. Chen, L. S. Jiang, B. Chi, J. Pua, J. Li, F. Liang, Lina, Journal of
Power Sources, 183 , 586–589,2008.
[21] I. T. Ellen and A.V. Virkar, chapter 9, Elsevier, Oxford, 229-260, 2003.
[22] S. Tanasescu, N. D. Totir and D. I. Marchidan, Solid State Ionics 119,
311- 315,1999.
[23] E. Maguire, B. Gharbage, F. M. B. Marques and J. A. Labrincha,
, Solid State Ionics, 127, 329- 335,2000.
[24] N. Q. Minh, Solid State Lonic, 174,271 ,2004.
[25] 黃鎮江,燃料電池,滄海出版社第3板,2006
[26] U. Schubert, N. Husing, 2004.
[27] D. H. Huang, National Taiwan Normal University, 2004.
54
[28] S. Saha, S. J. Ghanawat, R. D. Purohit, Journal of Materials Science, 41,
1939-1943, 2006.
[29] M. Q. Wang, National Cheng Kung University , 2004
[30] W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, The American
Ceramic Society, 91, 1155-1162, 2008.
[31] C. H. Wu, National Taipei University of Technology, 2006.
[32] Y. Y. Yang, NationalTsing Hua University, 2005.
[33] S. C. Yan, National Cheng Kung University, 2005.
[34] R. J. Bell, G. J. Millar, J. Drennan, Solid State Ionics, 131, 211-220,
2000.
[35] E. Maguire, B. Gharbage, F. M. B. Marques and J. A. Labrincha, Solid
State Ionics, 127, 329- 335, 2000.
[36] Z. H. Chen, R. Ran, W . Zhou, Z. P. Shao, S. M. Liu, Electrochimica
Acta,52, 7343-7351, 2007.
[37] A.Y.Yan,L. Bin, Y.L Deng, Z. J. Tian, D. Z. wang, M. J. Cheng,
Applied Catalysis, 80, 24–31, 2008 [38] J. I. Jung, S. T. Misture. D.D. Edwards, Journal of Electroceramics, 24, 261-269, 2010
[39] E. Warburg, Annalen der Physik, 6, 125-135, 1901.
[40] J. E. B. Randles, Kinetics of rapid electrode reactions, Discussions of
the Faraday Society, 1, 11-19, 1947.
[41] Q. A. Huang, R. Hui, B. Wang, J. Zhang, Electrochimica Acta, 52,
8144-8164, 2007.
[42] Y. Lin, R. Ran, Y. Zheng, Z. P. Shao,W. Q. Jin, N. P. Xu, J.M. Ahn,
Journal of Power Sources, 180, 15-22, 2008.
[43] S. M. Haile, Acta Materialia, 51, 5981, 2003
[44] J. I. Jung, Doreen D. Edwards, Journal of Solid State Chemistry,
[45] C. T. Wu, National Cheng Kung University, 184, 2238-2243, 2003.
[46] J. M. Serra, V. B. Vert, M. Betz, V. A. C. Haanappel, W. A.
Meulenberg, and F. Tietz, J. Electrochem. 155, 207-214, 2008,
[47] H. Patra, S. K. Rout, S. K. Pratihar, S. Bhattacharya, Powder
Technology, vol.209, 98-104, 2011.
[48] S. Liu1, M. Liu, Z. Shao, J. C. D. Costa1, Z. P. Xu, Powder Technology,
90, 84-91, 2007.
[49] W. X. Zhong, “Co-precipitation Synthesis of La0.6Sr0.4Co0.2Fe0.8O3-δ-
Sm0.2Ce0.8O3-δ for IT-SOFC Composite Cathode”, National Taipei
University of Technology, 2009.
[50] W. Zhou, R. Ran, Z. P. Shao, H. X. Gu, W. Q. Jin, N. P. Xu,
Journal of Power Sources, 174, 2371-245, 2007
[51] W. Zhou, R. Ran, Z. P. Shao, Journal of Power Sources, 174, 231-246,
2009
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊