|
Booth, H., J. Maindonald, and L. Smith (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies 56(3), 325-336. Butt, Z. and S. Haberman (2009). ilc: A collection of R functions for fitting a class of Lee-Carter mortality models using iterative fitting algorithms.Actuarial Research Paper No.190 . Cairns, A. J., D. Blake, K. Dowd, G. D. Coughlan, D. Epstein, A. Ong, and I. Balevich (2007). A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North American Actuarial Journal 13, 1-35. Hyndman, R. and M. Ullah (2007). Robust forecasting of mortality and fertility rate: A functional data approach. Computational Statistics and Data Anaysis 51, 4942-4956. Kupper, L. L., J. M. Janis, A. Karmous, and B. G. Greenberg (1985). Statistical Age-Period-Cohort analysis: A review and critique. Journal of Chronic Diseases 811-830, 659-671. Lee, R. and T. Miller (2001). Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography 38, 537-549. Lee, R. D. and L. R. Carter (1992). Modelling and forecasting the time series of US mortality. Journal of the American Statistical Association 87,659-671. Renshaw, A. and S. Haberman (2006). A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics 38, 556-570. Tuljapurkar, S., N. Li, and C. Boe (2000). A universal pattern of mortality decline in G7 countries. Nature 405, 789-792. Wilmoth, J. (1996). Mortality projections for Japan: a comparison of four methods. Health and Mortality Among Elderly Populations, 266-287. Yang, S. S., J. C. Yue, and H. C. Huang (2010). Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models. Insurance: Mathematics and Economics 46, 254-270.
|