跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳詳翰
研究生(外文):Xiang-han Chen
論文名稱:運用演化式 PageRank之期刊排名演算法
論文名稱(外文):The Evolutionary PageRank Approach for Journal Ranking
指導教授:陳彥良陳彥良引用關係
指導教授(外文):Yen-Linag Chen
學位類別:博士
校院名稱:國立中央大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:99
中文關鍵詞:期刊排名專家限制網頁排名法粒子群最佳化遺傳演算法
外文關鍵詞:Journal RankingExperts’ ConstraintsPageRankParticle Swarm OptimizationGenetic Algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:1
由於學術績效評價的需要,期刊排名問題已經引起各領域研究者的廣泛關注。過去研究主要集中在解決期刊的排名問題,無論是根據主觀態度的專家調查法或是基於客觀的引文評價方法。但是這兩種方法都有各自的優缺點,而且它們通常互補;另一方面,分級排名常用來提供決策制定與獎勵配置,是實務上相當有價值的方法。然而它是一種資源分配與組合最佳化問題,難以直接透過傳統引文分析方法得到結果,因此本研究試圖提出了兩種全新的方法,前者整合主客觀觀點,後者解決分級排名問題。
在本研究中,我們提出兩個演化式PageRank算法,第一個方法採用多目標粒子群最佳化演算法來平衡引文分析和專家意見的分歧。並透過實驗評估排名結果,證明了它的有效性。結果顯示,本研究的方法提升了專家對PageRank期刊排名結果的滿意程度。第二個演算法利用一種樹狀的染色體編碼來表示分級排名,利用此編碼可以有效地將等級分配與聲望值整合與一個染色體中,再透過遺傳演算法來求出基於引文與類別比例設定的最佳的等級分配。實驗也證明此方法可精準的分配等級比例並能有效的保證等級內成員的相似程度。
The journal ranking problem has drawn a great deal of attention from researchers in various fields due to its importance in the evaluation of academic performance. Most previous studies solved the journal ranking problem with either a subjective approach based on expert survey metrics or an objective approach based on citation-based metrics. Since both approaches have their own advantages and disadvantages, and since they are usually complementary, this work proposes a brand new approach that integrates the two previous approaches. In addition, the class-ranking is quite valuable method to provide decision makers with the incentive preparation in practice. However, it is a resource allocation and combinatorial optimization, so it is difficult to get results by the traditional citation analysis method. To this end, we propose the second approach in this study to solve the class-ranking with citation-based data.
In this study, we propose two evolutionary PageRank algorithms. The first method uses the Multi-Objective Particle Swarm Optimization to balance citation analysis and expert opinion. Experiments evaluating ranking quality were carried out with citation records and experts’ surveys to show the effectiveness of the proposed method. The results indicate that the proposed method can improve PageRank journal ranking results. The second method uses a tree-based chromosome to represent a class-ranking problem. This encoding can be combining all assigned classes and prestige values in a chromosome effectively. We, also, use the Genetic Algorithm to determine an optimal graded assignment based on the citations and users constraints. Experimental results also proved that this method can be allocation classes precisely, and ensure the similarity between the members of the same class.
中文摘要.................................................................................................... i 英文摘要................................................................................................... ii
誌謝.........................................................................................................iii
目錄........................................................................................................ iv
圖目錄.................................................................................................... vii
表目錄..................................................................................................... ix
第一章 緒論................................................................................................1
1.1 研究動機 ............................................................................................ 3
1.2 研究目的 ............................................................................................ 5
1.3 方法簡介 ............................................................................................ 5
1.4 研究貢獻 ............................................................................................ 8
1.5 論文架構 ............................................................................................ 9
第二章 文獻回顧.......................................................................................10
2.1 PageRank 演算法 ..............................................................................10
2.2 演化式演算法 ................................................................................... 12
2.2.1 粒子群演算法................................................................................. 13
2.2.2 遺傳演算法.................................................................................... 15
2.3 分群方法 ......................................................................................... 17
第三章 專家知識導向的 PageRank 演算法 ................................................. 20 3.1 研究問題定義.....................................................................................21
3.1.1 定義期刊排名解 ............................................................................. 22
3.1.2 定義專家意見................................................................................. 23
3.1.3 定義問題目標................................................................................. 23
3.2 演算法............................................................................................. 27
3.2.1 粒子編碼....................................................................................... 29
3.2.2 初始化階段.................................................................................... 29
3.2.3 非支配解集合................................................................................. 30
3.2.4 位置更新....................................................................................... 31
3.2.5 吸引因子選擇................................................................................. 31
3.2.6 突變操作....................................................................................... 32
3.3 實驗測試.......................................................................................... 33
3.3.1 結果分析....................................................................................... 33
3.3.2 排名產生....................................................................................... 34
3.3.3 滿意度調查(與其他方法比較) ........................................................... 38
3.3.4 滿意度調查(與專家排名比較) ........................................................... 40
3.3.5 參數與效能分析.............................................................................. 42
第四章 分級 PageRank 演算法 ................................................................. 44
4.1 問題定義............................................................................................46
4.1.1 染色體編碼 .................................................................................... 46
4.1.2 定義問題目標................................................................................. 47
4.1.3 定義目標函式................................................................................. 48
4.1.4 模式基本性質................................................................................. 48
4.2 演算法.............................................................................................. 50
4.2.1 初始化階段..................................................................................... 50
4.2.2 演化階段........................................................................................ 52
4.2.3 基因修復機制................................................................................. 59
4.3 實驗測試........................................................................................... 62
4.3.1 實驗設計........................................................................................ 62
4.3.2 結果分析........................................................................................ 62
4.3.3 參數與效能分析.............................................................................. 67
第五章 結論..............................................................................................69
5.1 研究結論............................................................................................69
5.2 研究範圍與限制..................................................................................69
5.3 未來發展............................................................................................71
參考文獻................................................................................................. 72 附錄一.................................................................................................... 80
附錄二.................................................................................................... 83
附錄三.................................................................................................... 85
Agarwal, A., Chakrabarti, S., &; Aggarwal, S. (2006). Learning to rank networked entities. Paper presented at the Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, Philadelphia, PA, USA.
Agarwal, B. B., &; Khan, M. H. (2013). Analysis of Rank Sink Problem in PageRank Algorithm International Journal of Scientific &; Engineering Research, 4(11), 251-256.
Alam, S., Dobbie, G., &; Riddle, P. (2008). Particle swarm optimization based clustering of web usage data. Paper presented at the Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.
Alsabti, K., Ranka, S., &; Singh, V. (1998). An efficient k-means clustering algorithm. Paper presented at the IPPS/SPDP Workshop on High Performance Data Mining.
Arabali, A., Ghofrani, M., Etezadi-Amoli, M., Fadali, M., &; Baghzouz, Y. (2013). Genetic-algorithm-based optimization approach for energy management. Power Delivery, IEEE Transactions on, 28(1), 162-170.
Balasundaram, B., Butenko, S., &; Hicks, I. V. (2011). Clique relaxations in social network analysis: The maximum k-plex problem. Operations Research, 59(1), 133-142.
Banks, A., Vincent, J., &; Anyakoha, C. (2008). A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing, 7(1), 109-124.
Bar-Ilan, J. (2010). Rankings of information and library science journals by JIF and by h-type indices. Journal of Informetrics, 4(2), 141-147.
Bar-Ilan, J., Mat-Hassan, M., &; Levene, M. (2006). Methods for comparing rankings of search engine results. Computer Networks, 50(10), 1448-1463.
Barnes, S. J. (2005). Technical opinion: assessing the value of IS journals. Communications of the ACM, 48(1), 110-112.
Beattie, V., &; Goodacre, A. (2006). A new method for ranking academic journals in accounting and finance. Accounting and Business Research, 36(2), 65-91.
Bergstrom, C., &; West, J. (2008). Assessing citations with the EigenfactorTM metrics. Neurology, 71(23), 1850-1851.
Bezdek, J. C., &; Pal, N. R. (1998). Some new indexes of cluster validity. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 28(3), 301-315.
Bollen, J., Rodriquez, M., &; Van de Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669-687.
Brin, S., &; Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer networks and ISDN systems, 30(1-7), 107-117.
Cagnina, L., Esquivel, S., &; Coello, C. A. C. (2005). A Particle Swarm Optimizer for multi-objective optimization. Journal of computer science and technology, 5(4), 204-210.
Chartier, T. P. (2008). A Googol of Information about Google. Computing in Science &; Engineering, 10(6), 11-12.
Chen, P., Xie, H., Maslov, S., &; Redner, S. (2007). Finding scientific gems with google's pagerank algorithm. Journal of Informetrics, 1(1), 8-15.
Clerc, M. (2004). Discrete particle swarm optimization, illustrated by the traveling salesman problem New optimization techniques in engineering (pp. 219-239).
Coello, C. A. C., Pulido, G. T., &; Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256-279.
Coleman, A. (2007). Assessing the value of a journal beyond the impact factor.
Journal of the American Society for Information Science and Technology,
58(8), 1148-1161.
Davis, P. M. (2008). Eigenfactor: Does the principle of repeated improvement result
in better estimates than raw citation counts? Journal of the American Society
for Information Science and Technology, 59(13), 2186-2188
Dellavalle, R., Schilling, L., Rodriguez, M., Van de Sompel, H., &; Bollen, J. (2007).
Refining dermatology journal impact factors using PageRank. Journal of the American Academy of Dermatology, 57(1), 116-119.
Dempster, A. P., Laird, N. M., &; Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal statistical Society, 39(1), 1-38.
Ding, Y., Yan, E., Frazho, A., &; Caverle, J. (2009). PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 60(11), 2229-2243.
Doke, E., Rebstock, S., &; Luke, R. (1995). Journal Publishing Preferences of CIS/MIS Scholars: An Empirical Investigation. Journal of Computer Information Systems, 36, 49-49.
Dorogovtsev, S. N., Goltsev, A. V., &; Mendes, J. F. F. (2006). K-core organization of complex networks. Physical review letters, 96(4), 040601.
Ester, M., Kriegel, H.-P., Sander, J., &; Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented at the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD).
Everett, M. G., &; Borgatti, S. P. (1998). Analyzing clique overlap. Connections, 21(1), 49-61.
Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(4060), 471-479.
Garfield, E. (2006). The history and meaning of the journal impact factor. The Journal of the American Medical Association, 295(1), 90-93.
Gillenson, M., &; Stutz, J. (1991). Academic issues in MIS: Journals and books. MIS Quarterly, 15(4), 447-452.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Massachusetts: Addison-Wesley, Reading.
Gonçalves, J. F., &; Resende, M. G. (2013). A biased random key genetic algorithm for 2D and 3D bin packing problems. International Journal of Production Economics, 145(2), 500-510.
Habibzadeh, F., &; Yadollahie, M. (2008). Journal weighted impact factor: A proposal. Journal of Informetrics, 2(2), 164-172.
Han, J., Kamber, M., &; Pei, J. (2007). Data mining: concepts and techniques (Second ed.): Morgan kaufmann.
Hardgrave, B., &; Walstrom, K. (1997). Forums for MIS scholars. Communications of the ACM, 40(11), 119-124.
Harris, C. (2008). Ranking the management journals. Journal of Scholarly Publishing, 39(4), 373-409.
Haveliwala, T. H. (2002). Topic-sensitive PageRank. Paper presented at the Proceedings of the 11th international conference on World Wide Web, Honolulu, Hawaii, USA.
He, X., Zha, H., HQ Ding, C., &; D Simon, H. (2002). Web document clustering using hyperlink structures. Computational Statistics &; Data Analysis, 41(1), 19-45.
Herbrich, R., Graepel, T., &; Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. Advances in Large Margin Classifiers (pp. 115-132): MIT Press.
Hinneburg, A., &; Keim, D. A. (1998). An efficient approach to clustering in large multimedia databases with noise. Paper presented at the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD).
Hofacker, C. F., Gleim, M. R., &; Lawson, S. J. (2009). Revealed reader preference for marketing journals. Journal of the Academy of Marketing Science, 37(2), 238-247.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Cambridge, MA: University of Michigan Press.
Hu, X., Shi, Y., &; Eberhart, R. (2004). Recent advances in particle swarm. Paper presented at the IEEE congress on evolutionary computation.
Jing, Y., &; Baluja, S. (2008). VisualRank: Applying PageRank to large-scale image search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), 1877-1890.
Karypis, G., Han, E.-H., &; Kumar, V. (1999). Chameleon: Hierarchical clustering using dynamic modeling. Computer, 32(8), 68-75.
Katerattanakul, P., Han, B., &; Hong, S. (2003). Objective quality ranking of computing journals. Communications of the ACM, 46(10), 111-114.
Kaufman, L., &; Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ, USA. : John Wiley &; Sons, Inc.
Kennedy, J., &; Eberhart, R. (1995). Particle swarm optimization. Paper presented at the Proceedings of IEEE International Conference on Neural Networks.
Krink, T., Vesterstrøm, J. S., &; Riget, J. (2002). Particle swarm optimization with spatial particle extension. Paper presented at the Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii.
Kuo, R. J., &; Han, Y. S. (2011). A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem–A case study on supply chain model. Applied Mathematical Modelling, 35(8), 3905-3917.
Lim, A., Ma, H., Wen, Q., Xu, Z., &; Cheang, B. (2009). Distinguishing citation quality for journal impact assessment. Communications of the ACM, 52(8), 111-116.
Lim, A., Xu, Z., &; Wen, V. Q. (2007). Journal-Ranking.com Retrieved April 23,2010, from http://www.journal-ranking.com/ranking/web/index.html
Loads Structures, Fatigue Binh Lv, Ishihara T, Phuc Pv, &; YA, F. (1995). Analysis and Comparisons of Genetic Algorithm, Simulated Annealing, Tabu Search, and Evolutionary Combination Algorithm. Informatica, 18(4), 399-410.
Lowry, P., Romans, D., &; Curtis, A. (2004). Global journal prestige and supporting disciplines: A scientometric study of information systems journals. Journal of the Association for Information Systems (JAIS), 5(2), 29-80.
Ma, N., Guan, J., &; Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing &; Management, 44(2), 800-810.
Madhuri, &; Deep, K. (2009). A state-of-the-art review of population-based parallel meta-heuristics. Paper presented at the World Congress on Nature &; Biologically Inspired Computing, 2009 (NaBIC 2009).
Maslov, S., &; Redner, S. (2008). Promise and pitfalls of extending Google's PageRank algorithm to citation networks. Journal of Neuroscience, 28(44), 11103-11105.
Mylonopoulos, N. A., &; Theoharakis, V. (2001). On site: global perceptions of IS journals: Where is the best IS research published? Communications of the ACM, 44(9), 29-33.
Nord, J. H., &; Nord, G. D. (1995). MIS research: journal status assessment and analysis. Information &; Management, 29(1), 29-42.
Ocak, H. (2013). A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. Journal of medical systems, 37(2), 1-9.
Olson, J. E. (2005). Top-25-business-school professors rate journals in operations management and related fields. Interfaces, 35(4), 323-338.
Page, L., Brin, S., Motwani, R., &; Winograd, T. (1998). The pagerank citation ranking: Bringing order to the web. Stanford Digital Libraries Working Paper.
Park, L. A., &; Ramamohanarao, K. (2011). Multiresolution web link analysis using generalized link relations. IEEE Transactions on Knowledge and Data Engineering, 23(11), 1691-1703.
Park, L. A. F., &; Ramamohanarao, K. (2011). Multiresolution Web Link Analysis Using Generalized Link Relations. Knowledge and Data Engineering, IEEE Transactions on, 23(11), 1691-1703.
Park, S., Suresh, N. C., &; Jeong, B.-K. (2008). Sequence-based clustering for Web usage mining: A new experimental framework and ANN-enhanced K-means algorithm. Data &; Knowledge Engineering, 65(3), 512-543.
Parthasarathy, S., Ruan, Y., &; Satuluri, V. (2011). Community discovery in social networks: Applications, methods and emerging trends Social network data analytics (pp. 79-113): Springer.
Peffers, K., &; Ya, T. (2003). Identifying and evaluating the universe of outlets for information systems research: Ranking the journals. Journal of Information Technology Theory and Application, 5(1), 63-84.
Pillai, S., Suel, T., &; Cha, S. (2005). The Perron-Frobenius theorem: some of its applications. IEEE Signal Processing Magazine, 22(2), 62-75.
Pinski, G., &; Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing &; Management, 12(5), 297-312.
Rainer, R. K., &; Miller, M. D. (2005). Examining differences across journal rankings. Communications of the ACM, 48(2), 91-94.
Rana, S., Jasola, S., &; Kumar, R. (2011). A review on particle swarm optimization algorithms and their applications to data clustering. Artificial Intelligence Review, 35(3), 211-222.
Rasmussen, T. K., &; Krink, T. (2003). Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization--evolutionary algorithm hybrid. Biosystems, 72(1-2), 5-17.
Ratnaweera, A., Halgamuge, S., &; Watson, H. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(3), 240-255.
Rini, D. P., Shamsuddin, S. M., &; Yuhaniz, S. S. (2011). Particle swarm optimization: technique, system and challenges. International Journal of Computer Applications, 14(1), 19-26.
Serenko, A., &; Bontis, N. (2009). Global ranking of knowledge management and intellectual capital academic journals. Journal of Knowledge Management, 13(1), 4-15.
Sheikholeslami, G., Chatterjee, S., &; Zhang, A. (1998). WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases. Paper presented at the Proceedings of the 24rd International Conference on Very Large Data Bases.
Shih Huang-Chia, Hwang Jenq-Neng, &; Huang Chung-Lin (2009). Content-Based Attention Ranking Using Visual and Contextual Attention Model for Baseball Videos. Multimedia, IEEE Transactions on, 11(2), 244-255.
Song, M.-P., &; Gu, G.-c. (2004, 26-29 Aug. 2004). Research on particle swarm optimization: a review. Paper presented at the Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004.
Svensson, G. (2008). Scholarly journal ranking (s) in marketing: single- or multi-item measures? Marketing Intelligence &; Planning, 26(4), 340-352.
Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., &; Gencyilmaz, G. (2007). A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. European Journal of Operational Research, 177(3), 1930-1947.
Tripathi, P. K., Bandyopadhyay, S., &; Pal, S. K. (2007). Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients. Information Sciences, 177(22), 5033-5049.
Vallada, E., &; Rubén, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research, 211(3), 612-622.
Vesanto, J., &; Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3), 586-600.
Via, B. J., &; Schmidle, D. J. (2007). Investing Wisely: Citation rankings as a measure of quality in library and information science journals. Portal-Libraries and the Academy, 7(3), 333-374.
Vidal, T., Crainic, T. G., Gendreau, M., &; Prins, C. (2013). A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Computers &; Operations Research, 40(1), 475-489.
Walstrom, K., Hardgrave, B., &; Wilson, R. (1995). Forums for management information systems scholars. Communications of the ACM, 38(3), 93-107.
Wang, W., Yang, J., &; Muntz, R. R. (1997). STING: A Statistical Information Grid Approach to Spatial Data Mining. Paper presented at the Proceedings of the 23rd International Conference on Very Large Data Bases.
West, J., Althouse, B., Bergstrom, C., Rosvall, M., &; Bergstrom, T. (2007). Eigenfactor.org: Ranking and mapping scientific knowledge Retrieved April 23, 2010, from http://www.eigenfactor.org/
Zhang, H., &; Su, J. (2004). Naive Bayesian Classifiers for Ranking. Lecture Notes in Computer Science, 3201(1), 501-512.
Zhang, L., Qin, T., Liu, T.-Y., Bao, Y., &; Li, H. (2007). N-Step PageRank for Web Search. Advances in Information Retrieval, 4425, 653-660.
Zhang, W., Wang, X., Zhao, D., &; Tang, X. (2012). Graph degree linkage: Agglomerative clustering on a directed graph. Lecture Notes in Computer Science, 7572, 428-441.
Zhang, W., Zhao, D., &; Wang, X. (2013). Agglomerative clustering via maximum incremental path integral. Pattern Recognition, 46(11), 3056-3065.
Zhao, L., &; Yang, Y. (2009). PSO-based single multiplicative neuron model for time series prediction. Expert Systems with Applications, 36(2, Part 2), 2805-2812.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊