跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/28 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧弘翊
研究生(外文):Hong-yi Lu
論文名稱:微電網電力轉換器基於多種條件下之雙向柔性切換IGBT其熱管理與績效評估
論文名稱(外文):Thermal management and performance evaluation based on a dual bi-directional, soft-switched IGBT for the autonomous microgrid inverter power system under various operating conditions
指導教授:傅尹坤傅尹坤引用關係
指導教授(外文):Yiin-kuen Fuh
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:微電網電力轉換器絕緣柵雙極晶體管熱管理熱界面材料
外文關鍵詞:MicrogridInverterIGBTThermal managementThermal interface material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討微電網之重要元件-電力轉換器(Inverter)系統其熱管理之評估,因較高之電壓或電流將間接地或連續地產生高溫,致使電子元件之使用壽命減短並導致系統效率下降,特別是微電網電力轉換器所使用之絕緣柵雙極晶體管(insulated gate bipolar transistor, IGBT)。本論文5kW電力轉換器之實驗均操作在60Hz之工作頻率與20kHz之脈衝頻率,探討在不同功率下,溫度與速度場之分布、IGBT電路板角度與使用不同散熱材料(散熱膏與散熱墊)之影響。根據實驗結果發現,在較高功率時,IGBT模組之溫度明顯上升且在3kW之放電功率搭配強制對流下(風扇開啟),可有效地降低IGBT模組之溫度約35°C。在添加散熱膏於IGBT模組與散熱鰭片之實驗結果中,添加散熱膏反而使IGBT模組之溫度上升,其主要原因為熱阻抗(thermal resistance)增加,致使散熱更不易,導致溫度上升。而在更換不同型式之散熱墊中,就可有效地改善其溫度場,其原因為使用厚度(0.2mm與1mm)不一之散熱墊,使其熱阻抗減小,達到改善之目的,在兩種型式之一層與兩層散熱墊中,其溫度差可有效地降低15.4°C與13.1°C,故散熱墊之厚度對於系統之選用是相當重要的一環。而在不同散熱墊之厚度、溫度與熱阻之實驗結果中,溫度越高,熱阻值也隨之增高,其原因為溫度上升,使材料性質劣化,導致熱阻值增加,影響系統散熱效果。
The thermal management of the inverter is of great importance since very high voltage/current will be switched intermittently and/or continuously and high temperature is excruciably detrimental to the service life of electronics such as insulated gate bipolar transistor (IGBT). In this study, a newly developed dual bi-directional IGBT-based inverter with autonomous microgrid system is investigated with particular focus on the thermal management under various operation conditions. The module is operated at the switching and pulse frequencies of 60 Hz and 20 kHz, respectively. The adoption of thermal interface material in either paste or film form had experimentally shown to possess the flexibility tailoring heat transfer performance locally. Experimental studies of heat dissipating film with various hotspot scenarios showed that the temperature difference can be appreciably reduced as many as 15.4°C and 13.1°C, respectively with facilitation of one- and two- layers of heat dissipating film. From the measurement results, the measured peak temperature is highly dominated by the thickness of heat dissipating film, showing the dominance of thickness-dependent thermal resistance and resultant heat accumulation.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 3
第二章 文獻回顧 4
2-1 高功率電晶體 5
2-2 熱管理技術 7
2-3 模擬方法 8
第三章 研究設計與實驗架構 9
3-1 研究設計 9
3-2 實驗架構 14
3-2-1 0.5kW~3kW溫度量測 18
3-2-2 電路板角度之影響 19
3-2-3 散熱膏之影響 20
3-2-4 散熱墊之影響 21
3-2-5 電感位置之影響 22
3-2-6 模擬步驟 23
第四章 結果與討論 25
4-1 5kW電力轉換器實驗分析 25
4-1-1 自然與強制對流之影響 29
4-1-2 電路板角度之影響 32
4-1-3 散熱膏之影響 33
4-1-4 散熱墊之影響 35
4-1-5 材料厚度與溫度對熱阻之影響 37
4-1-6 電感位置之影響 42
4-2 5kW電力轉換器模擬分析 43
4-2-1 FDS模擬 43
4-2-2 ANSYS Fluent模擬 50
4-3 15kW電力轉換器實驗與模擬分析 56
4-3-1 實驗分析 56
4-3-2 模擬分析 60
第五章 結論與建議 63
5-1 結論 63
5-2 現有系統改良建議 66
5-3 未來展望 67
參考文獻 68

[1]J.P. Holman, Heat Transfer, China Machine Press (2005).
[2]Y. Takahashi, K. Yoshikawa, M. Soutome, T. Fujii, M. Ichijyou and Y. Seki, 2.5kV-1000A power pack IGBT (high power flat-packaged RC-IGBT), IEEE International Symposium on Power Semiconductor Devices and ICs 5392001 (1996) 299-302.
[3]D. Rastler, Electrical energy storage technology options, Electric Power Research Institute Report 1020676 (2010).
[4]T.C. Chang, J.P. Zhang and Y.K. Fuh, Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery, J. Power Sources 245 (2014) 66-75.
[5]F. Katiraei and M.R. Iravani, Power management strategies for a microgrid with multiple distributed generation units, IEEE Trans. Power Syst. 21 (2006) 1821-1831.
[6]P. Zhang, W. Li, S. Li, Y. Wang and W. Xiao, Reliability assessment of photovoltaic power systems : review of current status and future perspectives, Appl. Energy 104 (2013) 822-833.
[7]B. Czerny, M. Lederer, B. Nagl, A. Trnka, G. Khatibi and M. Thoben, Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions, Microelectron. Reliab. 52 (2012) 2353-2357.
[8]M. Bouarroudj, Z. Khatir, J.P. Ousten, F. Badel, L. Dupont and S. Lefebvre, Degradation behavior of 600V-200A IGBT modules under power cycling and high temperature environment conditions, Microelectron. Reliab. 47 (2007) 1719-1724.
[9]J.S. Jeong, S.H. Hong and S.D. Park, Field failure mechanism and improvement of EOS failure of integrated IGBT inverter modules, Microelectron. Reliab. 47 (2007) 1795-1799.
[10]O. Schilling, M. Schafer, K. Mainka, M. Thoben and F. Sauerland, Power cycling testing and FE modelling focussed on Al wire bond fatigue in high power IGBT modules, Microelectron. Reliab. 52 (2012) 2347-2352.
[11]A. Benmansour, S. Azzopardi, J.C. Martin and E. Woirgard, Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions, Microelectron. Reliab. 47 (2007) 1730-1734.
[12]F. Richardeau, Z. Dou, E. Sarraute, J.M. Blaquiere and D. Flumian, Comparison of IGBT short-circuit failure ‘‘ohmic mode’’: Epoxy molded package versus silicone gel module for new fail-safe and interruptible power converters, Microelectron. Reliab. 51 (2011) 1919-1926.
[13]M. Tounsi, A. Oukaour, B. Tala-Ighil, H. Gualous, B. Boudart and D. Aissani, Characterization of high-voltage IGBT module degradations under PWM power cycling test at high ambient temperature, Microelectron. Reliab. 50 (2010) 1810-1814.
[14]T. Lhommeau, X. Perpin, C. Martin, R. Meuret, M. Mermet-Guyennet and M. Karama, Thermal fatigue effects on the temperature distribution inside IGBT modules for zone engine aeronautical applications, Microelectron. Reliab. 47 (2007) 1779-1783.
[15]X. Perpina, J.F. Serviere, X. Jorda, A. Fauquet, S. Hidalgo, J. Urresti-Ibanez, J. Rebollo and M. Mermet-Guyennet, IGBT module failure analysis in railway applications, Microelectron. Reliab. 48 (2008) 1427-1431.
[16]X. Perpina, A. Castellazzi, M. Piton, M. Mermet-Guyennet and J. Millan, Failure-relevant abnormal events in power inverters considering measured IGBT module temperature inhomogeneities, Microelectron. Reliab. 47 (2007) 1784-1789.
[17]T.Y. Hung, S.Y. Chiang, C.Y. Chou, C.C. Chiu and K.N. Chiang, Thermal design and transient analysis of insulated gate bipolar transistors of power module, IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 11404012 (2010) 1-5.
[18]Y.P. Zhang, X.L. Yu, Q.K. Feng and R.T. Zhang, Thermal performance study of integrated cold plate with power module, Appl. Therm. Eng. 29 (2009) 3568-3573.
[19]S.F. Sufian, M.Z. Abdullah, M.K. Abdullah and J.J. Mohamed, Effect of side and tip gaps of a piezoelectric fan on microelectronic cooling, IEEE Trans. Compon. Packag. Technol. 3 (2013) 1545-1553.
[20]Y.J. Lee, P.S. Lee and S.K. Chou, Hotspot mitigating with obliquely finned microchannel heat sink - an experimental study, IEEE Trans. Compon. Packag. Technol. 3 (2013) 1332-1341.
[21]C.K. Liu, S.J. Yang, Y.L. Chao, K.Y. Liou and C.C. Wang, Effect of non-uniform heating on the performance of the microchannel heat sinks, Int. Commun. Heat Mass 43 (2013) 57-62.
[22]B. Fakhim, N. Srinarayana, M. Behnia and S.W. Armfield, Thermal performance of data centers-rack level analysis, IEEE Trans. Compon. Packag. Technol. 3 (2013) 792-799.
[23]N. Dean, Application of advanced materials and thermal management, SST-AP Taiwan (2005).
[24]L. Gu, X. Ling and H. Peng, An experimental and numerical investigation of air side heat transfer and flow characteristics on finned plate configuration, Heat Mass Transfer. 48 (2012) 1707-1721.
[25]W. Rashmi, A.F. Ismail, M. Khalid and Y. Faridah, CFD studies on natural convection heat transfer of Al2O3-water nanofluids, Heat Mass Transfer. 47 (2011) 1301-1310.
[26]L. Novak, M. Mori and M. Sekavcnik, Heat transfer study in rotating cascade using IR thermography and CFD analyses, Heat Mass Transfer. 44 (2008) 559-567.
[27]M.I. Karamangil, A. Avci and H. Bilal, Investigation of the effect of different carbon film thickness on the exhaust valve, Heat Mass Transfer. 44 (2008) 587-598.
[28]R. Shyam and R.P. Chhabra, Natural convection in power-law fluids from two square cylinders in tandem arrangement at moderate Grashof numbers, Heat Mass Transfer. 49 (2013) 843-867.
[29]Y. Li, C. Wang and R. Wang, Numerical simulation and experimental analysis of heat transfer through the neck tube into vertical cryogenic insulated cylinders, Heat Mass Transfer. 47 (2011) 813-820.
[30]W. Kriaa, S. Bejaoui, H. Mhiri, G.L. Palec and P. Bournot, Study of dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer using CFD simulations, Heat Mass Transfer. 50 (2014) 235-251.
[31]HGTG20N60A4D, Fairchild Semiconductor Corporation catalogs (2009).
[32]CM100DY-24A, Mitsubishi Electric catalogs (2009).
[33]J.S. Lai, S.Y. Park, S. Moon and C.L. Chen, A high efficiency 5kW soft switched power conditioning system for low voltage solid oxide fuel cells, IEEE Power Conversion Conference 9702416 (2007) 463-470.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top