|
[1] W.R. Grove, “On voltaic series and the combination of gases by platinum” Philosophical Magazine and Journal of Science, Series 3, 14, pp. 127–130 , 1839 [2] Yunus Çengel, “Thermodynamics, 7e” Michael A. Boles, North Carolina State University—Raleigh, ISBN: 007352932x [3] http://fuelcelltoday.com/media/1889744/fct_review_2013.pdf [4] T. S. John Irvine • Paul Connor, “Solid Oxide Fuels Cells:Facts and Figures, Past, Present and Future Perspectives for SOFC Technologies” Green Energy and Technology, Springer, 2013 [5] H. S. Kim, J. H. Kang, I. Hyun. Oh,C. H.Jeong, S. J.Boo, J. H.Jo, H. S. Kim, “A Study of LSCF Cathode Material Prepared by Pechini Process for IT-SOFCs” International Conference on Power and Energy Systems, Lecture Notes in Information Technology, 13, 2012 [6] Z. Shao, W. Zhou, Z. Zhu, “Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells” Progress in Materials Science, 57, 804–874, 2012 [7] Taroco, H. A., Santos, J. A. F., Domingues, R. Z. and Matencio, T., “Ceramic Materials for Solid Oxide Fuel Cells” Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, 19, 2011 [8] 衣寶廉,燃料電池-原理與應用,初版,五南圖書出版股份有限公司, 2005 [9] 黃鎮江,燃料電池,修訂版,全華科技圖書股份有限公司,2004 [10] J.Richter, P. Holtappels, T. Graule, T. Nakamura, L. J. Gauckler, “Materials design for perovskite SOFC cathodes” Monatsh Chem, 140:985–999, 2009 [11] S.C. Singhal, K. Kendall , “High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications “ Elsevier Science (2004). [12] N. Q. Minh, J. Am, ” Ceramic Fuel Cells” Ceram. Soc, 76(3), 563, (1993) [13] N.Q. Minh, “Solid oxide fuel cell technology—features and applications” Solid State Ionics, 174, 271–277, 2004 [14] C. Li, K.C.K. Soh, P. Wu, “Formability of ABO3 perovskites” Journal of Alloys and Compounds 372, 40–48, 2004 [15] T. Ishihara, “Perovskite Oxide for Solid Oxide Fuel Cells”, Fuel Cells and Hydrogen Energy, ISBN: 978-0-387-77707-8, 2009 [16] H. Arai, T. Yamada, K. Eguchi, T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides” Applied Catalysis, 26, 265-276, 1986 [17] S. B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chem. Rev, 104, 4791-4843, 2004 [18] U. Schubert, N. Husing, “Synthesis of inorganic materials”, second, revised and updated edition, ISBN: 978-3-527-31037-1, 2004 [19] C. T. Wu, “Preparation and Characterization of Lanthanum-Indium (Gallium)-Zirconium Oxides by Chemical Coprecipitation”, National Cheng Kung University, 2003. [20] D. H. Huang, “Synthesis and Electrochemical Properties of Sm-doped and Bi-doped Cerium Oxides Prepared by a Low Temperature Hydrothermal Method for SOFC Electrolyte”, National Taiwan Normal University, 2004. [21] C. H. Wu, “Modified combustion synthesis method to prepare nano (La0.7Sr0.3)MnO3 electrode powders for enhancing fatigue properties of Pb(Zn,Nb,Zr,Ti)O3 material system”, National Taipei University of Technology, 2006. [22] W. Zhou, Z. Shao, R. Ran, H. Gu, W. Jin, and N. Xu, “LSCF nanopowder from Cellulose–Glycine-Nitrate Process and its application in Intermediate-Temperature Solid-Oxide Fuel Cells”, The American Ceramic Society, 91, 1155-1162, 2008. [23] EG &; G Technical Services Inc., Fuel Cell Handbook 7th Eds, U.S. , Department of Energy, 2004 [24] S. M. Haile, “Fuel cell materials and components” Acta Materialia, 51, 5981, 2003 [25] R. O. Hayre, S. W. Cha, W. Colella, F. B. Prinz, “Fuel Cell Fundamentals” Wiley, ISBN: 978-0-470-25843-9, 2008 [26] E. Povoden-Karadeniz, ”Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells” Swiss Federal Institute Of Technology Zurich, degree of doctor, 2008 [27] N. Y. Hsu, S. C. Yen, K. T. Jeng, C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectivesOriginal” Journal Power Sources, 161, 232, 2006 [28] Q. A. Huanga, R. Hui, B. Wang, J. Zhang,” A review of AC impedance modeling and validation in SOFC diagnosis” Electrochimica Acta, 52, 8144-8164, 2007 [29] Z. Shao, W. Zhou, Z. Zhu, “Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells” Progress in Materials Science, 57, 804, 2012 [30] M. Zhi, G. Zhou, Z. Hong, J. Wang, R. Gemmen, K. Gerdes, A. Manivannan, D. Mae, N. Wu, “Single crystalline La0.5Sr0.5MnO3 microcubes as cathode of solid oxide fuel cell” The Royal Society of Chemistry, Energy Environ, 4, 139-144, 2011 [31] J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, H. Tagawa, “Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ” Solid State Chem. 80, 102, 1989 [32] F. Tietz, V.A.C. Haanappel, A. Mai, J. Mertens, D. Stover, “Performance of LSCF cathodes in cell tests” Journal of Power Sources, 156, 20–22, 2006 [33] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos, “Glycine nitrate combustion synthesis of oxide ceramic powders”, Materials Letters,10(1–2):6–12, 1990 [34] C. C. Hwang, T.Y. Wu, J. Wan, J.S. Tsai, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders”, Materials Science and Engineering, B 111, 49–56, 2004 [35] B. Liu, Y. Zhang, “Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine–nitrate process for solid oxide fuel cell cathode”, Journal of Alloys and Compounds, 453, 418–422, 2008 [36] E. Thomas, S. H. Ehrman and H. J. Hwang, “Synthesis of La0.8Sr0.2CrO3 nano powder by glycine nitrate process”, Proceedings Power MEMS, 471-474, 2009 [37] C.M. Chanquı´a, J.E. Vega-Castillo, A.L. Soldati, H. Troiani, A. Caneiro, “Synthesis and characterization of pure-phase La0.75Sr0.25Cr0.5Mn0.5O3- δnanocrystallites for solid oxide fuel cell applications”, J Nanopart Res, 14:1104, 2012 [38] T.W. Chiu, B.S. Yu, Y.R. Wang, K.T. Chen, Y.T. Lin, “Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process”, Journal of Alloys and Compounds 509, 2933–2935,2011 [39] K.Tabata and S.Kohiki, “Catalytic properties and surface states of La1-x(Th, Sr)xCoO3”, J.Materials Science, 22, 3781, 1987 [40] W. Huan, Z. Hua, J. H. Jian, Z. W. Wen, “Effect of Fuel Amount on Synthesis of Gd0.8Sr0.2CoO3-δ Cathode Material by Glycine- nitrate Process” Journal of Inorganic Materials, 28, 8, 2013 [41] Q. A. Huanga, R. Hui, B. Wang, J. Zhang,” A review of AC impedance modeling and validation in SOFC diagnosis” Electrochimica Acta, 52, 8144-8164, 2007 [42] S. R. JAIN, K. C. ADIGA, V. R. PAl VERNEKER,” A New Approach to Thermochemical Calculations of Condensed Fuel-Oxidizer Mixtures” COMB USTION AND FLAME, 40: 71-79, 1981 [43] Z. Shao, W. Zhou, Z. Zhu,” Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells” Progress in Materials Science, 57, 804–874, 2012 [44] Y. H. Lim, J. Lee, J. S. Yoon, C.E. Kim, H. J. Hwang,” Electrochemical performance of Ba0.5Sr0.5CoxFe1−xO3−δ (x = 0.2–0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs” Journal of Power Sources, 171, 79–85, 2007 [45] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas and G. J. Exarhos,” Glycine-nitrate combustion synthesis of oxide ceramic powders” MATERIALS LETTERS, Volume 10, number 1,2, 1990 [46] A. S. Mukasyan, P. Epstein, P. Dinka, “Solution combustion synthesis of nanomaterials” Proceedings of the Combustion Institute, 31, 1789–1795, 2007 [47] R. R Kondakindi, “Effect of glycine concentration on the properties of LaCoO3 perovskite prepared by the glycine-nitrate process” Indian Journal of Chemistry, Vol. 51A, 931-936, 2012 [48] A. Mai, V. A.C. Haanappel, S. Uhlenbruck, F. Tietz, D. Stover, “Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells Part I. Variation of composition” Solid State Ionics, 176, 1341 – 1350, 2005 [49] H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, ” Ln0.4Sr0.6Co0.8Fe0.2O3−δ(Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells” Solid State Ionics, 117, 277–281, 1999 [50] P. Martínez, M. López, S. Bautista, D. S. García, R. Morales, C. Vazquez, P. Núñez, “Effect of a CGO buffer layer on the performance of (La0.6Sr0.4)0.995Co0.2Fe0.8O3-δ cathode in YSZ-Based SOFC” Bol. Soc. Esp. Ceram. V. 49, 1, 15-22, 2010
|