跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇聖軒
研究生(外文):Sheng-Shuan Su
論文名稱:視訊編碼之研究與軟硬體協同設計
論文名稱(外文):Research on Video Coding and Its Hardware/Software Co-Design
指導教授:蔡宗漢蔡宗漢引用關係
指導教授(外文):Tsung-Han Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:76
中文關鍵詞:視訊編碼
外文關鍵詞:Video Coding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,人們對視訊品質及解析度的要求也愈來愈高,從過往的HD或Full HD到如今的4K、8K甚至更高的解析度。在視訊相關應用上,如:影音串流、監控系統、影音儲存以及智慧影像解析,為了保持相對的視訊品質與壓縮率,由VCEG與MPEG共同組成的Joint Video Team (JVT),於2003年共同發表H.264/AVC視訊壓縮標準,使得高解析度影像可以帶入我們的日常生活中,這兩大工作群組更於2013年共同制定了High Efficiency Video Coding (HEVC)視訊壓縮標準,讓超高解析度影像不再徒留於我們的想像中。以下將分別介紹這兩個近年來的次世代視訊壓縮標準。
首先,我們利用Arrow SoC Development Kit作為我們的開發平台,該平台配有ARM Cortex A9 Processor以及 Altera Cyclone V FPGA,藉由此二硬體核心來實現我們的軟硬體設計。我們經過系統分割規劃以及複雜度分析後,將H.264中運算複雜度較高的兩塊模組實現成硬體,分別是Inter Prediction中的Mode Decision及熵編碼的Context-adaptive binary arithmetic coding (CABAC),以及較易整合於系統的Deblocking Filter。在軟體部分,我們優化了Motion Estimation (ME)傳統的full search及diagonal search,改良成搜尋點數較少、較有效率的Predict Hexagon Search (PHS)。
接著,我們提出一個適用於HEVC Inter Prediction中的快速模式決策演算法,優化了需大量運算且不斷遞迴執行的Rate–Distortion Optimization (RDO)決策方式。我們利用JCT-VC推薦的五種不同層級的測試序列以及HEVC Test Model (HM)來評估演算法效能。經由實驗結果得知,此一快速決策演算法最高可減少近50%的運算複雜度,在視訊品質和壓縮率都能維持與HM相差無幾的表現。

As the technology progressing, the requirement of video quality and resolution for human being is getting higher and higher, from previous HD or Full HD to nowadays 4K, 8k, or even higher. In the corresponding applications of video, such as: video streaming, surveillance system, video storage, and image analysis. For preserving the relative video quality and compression rate, the Joint Video Team (JVT) established by VCEG and MPEG announced the H.264/AVC video coding standard in 2003. It brings high resolution video into our daily life. Furthermore, these two big studios present the High Efficiency Video Coding (HEVC) standard in 2013; it will lead the ultra-high resolution video to no longer stay in our imagination. The following will introduce these two video coding standards.
First of all, we employ the Arrow SoC Development Kit as our development platform; this platform is equipped with ARM Cortex A9 Processor and Altera Cyclone V FPGA. By using these two hard cores to implement our hardware/software co-design. After the system scattering and analysis of computational complexity, we implement the mode decision inside inter prediction and Context-adaptive binary arithmetic coding (CABAC) into hardware together with the deblocking filter. In the software part, we optimize the conventional full search and diagonal search with less searching point and more efficiency Predict Hexagon Search (PHS).
Next, we proposed a fast mode decision algorithm in HEVC inter prediction. It optimizes Rate–Distortion Optimization (RDO) which needs the heavy computation and be executed routinely. We evaluate the proposed algorithm by employing five levels of test sequence which is recommended by JCT-VC. According to the experimental results, we can recognize that this fast algorithm reduces about 50% computational complexity, and the video quality and coding efficiency are almost same with HM encoder.

摘要 i
Abstract ii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Thesis Organization 3
Chapter 2 Overview of Video Coding 4
2.1 Video Compression Concept 4
2.1.1. Statistical Redundancy 4
2.1.2. Psychvisual Redundancy 7
2.2 Overview of H.264/AVC Standard 7
2.2.1. Intra Frame Coding 8
2.2.2. Inter Frame Coding 10
2.2.3. Transform and Quantization 11
2.2.4. In-Loop Deblocking Filter 13
2.2.5. Entropy Coding 14
2.3 High Efficiency Video Coding 17
2.3.1. Coding Tree Structure and Coding Unit 18
2.3.2. Prediction Unit 19
2.3.3. Transform Unit 21
2.3.4. In-Loop Filters 21
2.3.5. Entropy Coding 23
Chapter 3 Platform-Based Hardware/Software Co-Design for H.264/AVC Encoder 24
3.1 Platform Introduction 24
3.1.1. Platform Equipment 25
3.1.2. System Launching Process 26
3.1.3. System-Level Design 27
3.2 CABAC 29
3.3 Deblocking Filter 32
3.4 Motion Estimation 35
3.4.1. EIMD Architecture 36
3.4.2. Predict Hexagon Search 37
3.5 Summary 40
Chapter 4 Fast Mode Decision Method for HEVC Inter Prediction 43
4.1 Related Work 43
4.2 Observations 45
4.3 Inter Prediction Complexity Analysis 46
4.4 Edge Feature Abstraction and Accumulation 48
4.5 Mode Decision and Threshold Determination 50
4.6 Weighted Factor 52
4.7 Experimental Results 54
4.8 Summary 59
Chapter 5 Conclusion 60
References 62

[1] T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transaction on Circuit and System for Video Technology, vol.13, no.7, pp. 560-576, July 2003.
[2] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-1668.
[3] ITU-T Recommendation H.264, “Advanced video coding for generic audiovisual services,” International Telecommunication Union, Apr. 2013.
[4] F. Bossen, B. Bross, K. Sühring, and D. Flynn, “HEVC complexity and implementation analysis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, Dec. 2012, pp. 1685-1696.
[5] Fujitsu Corporation, “Annual Technical Report for HEVC/H.265,” Oct. 2013.
[6] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz, “Adaptive deblocking filter,” IEEE Transactions on Circuits and Systems for Video Technology, vol.13, no.7, pp.614,619, July 2003.
[7] D. Marpe, H. Schwartz and T.Wiegand, “Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC video compression standard,” IEEE Transaction on Circuits System Video Technology, vol. 13, no. 7, pp. 620–636, July 2003.
[8] P. Helle, S. Oudin, B. Bross, D. Marpe, M.O. Bici, K. Ugur, J. Jung, G. Clare, and T. Wiegand, “Block Merging for Quadtree-Based Partitioning in HEVC,” IEEE Transaction on Circuits System Video Technology, vol.22, no.12, pp.1720,1731, Dec. 2012.
[9] Norkin, A.; Bjontegaard, G.; Fuldseth, A.; Narroschke, M.; Ikeda, M.; Andersson, K.; Minhua Zhou; Van der Auwera, G., "HEVC Deblocking Filter," IEEE Transaction on Circuits System Video Technology, vol.22, no.12, pp.1746,1754, Dec. 2012.
[10] Chih-Ming Fu; Alshina, E.; Alshin, A.; Yu-Wen Huang; Ching-Yeh Chen; Chia-Yang Tsai; Chih-Wei Hsu; Shaw-Min Lei; Jeong-Hoon Park; Woo-Jin Han, “Sample Adaptive Offset in the HEVC Standard,” IEEE Transaction on Circuits System Video Technology, vol.22, no.12, pp.1755,1764, Dec. 2012.
[11] V. Sze, and M. Budagavi, "High Throughput CABAC Entropy Coding in HEVC," IEEE Transaction on Circuits System Video Technology, vol.22, no.12, pp.1778,1791, Dec. 2012.
[12] SoCKit User Manual, Terasic Technologies Inc., Hsinchu, Taiwan, 2013.
[13] AMBA AXI and ACE Protocol Specification, ARM, Cambridge, UK, 2011.
[14] Introduction to Altera IP Cores, Altera Corporation, San Jose, CA, 2014.
[15] R. H. Gweon and Y.-L. Lee, “Early termination of CU encoding to reduce HEVC complexity,” document JCTVC-F045, Torino, Italy, Jul. 2011.
[16] K. Choi, S. H. Park, and E. S. Jang, “Coding tree pruning based CU early termination,” document JCTVC-F092, Torino, Italy, Jul. 2011.
[17] J. Yang, J. Kim, K. Won, H. Lee, and B. Jeon, “Early SKIP detection for HEVC,” document JCTVC-G543, Geneva, Switzerland, Nov. 2011.
[18] Liquan Shen, Zhaoyang Zhang, and Ping An, “Fast CU size decision and mode decision algorithm for HEVC intra coding,” IEEE Transactions on Consumer Electronics, vol.59, no.1, pp.207,213, February 2013.
[19] Seunghyun Cho, and Munchurl Kim, “Fast CU Splitting and Pruning for Suboptimal CU Partitioning in HEVC Intra Coding,” IEEE Transaction on Circuits System Video Technology, vol.23, no.9, pp.1555,1564, Sept. 2013.
[20] L. Shen, Z. Zhang, and Z. Liu, "Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatio-temporal correlations," IEEE Transaction on Circuits System Video Technology, vol.PP, no.99, pp.1,1
[21] F. Bossen, “Common test conditions and software reference configurations,” document JCTVC-J1100, Stockholm, Sweden, July 2012.
[22] I. K. Kim, K. McCann, K. Sugimoto, B. Bross, W. J. Han, and Gary Sullivan, “High Efficiency Video Coding (HEVC) Test Model 13 (HM13) encoder description,” document JCTVC-O1002, Geneva, Switzerland, Nov. 2013.
[23] Jian Xiong, Hongliang Li, Qingbo Wu, and Fanman Meng, "A Fast HEVC Inter CU Selection Method Based on Pyramid Motion Divergence," IEEE Transactions on Multimedia, vol.16, no.2, pp.559,564, Feb. 2014.
[24] Jiawen Qiu, Fan Liang, and Yonglin Luo, “A fast coding unit selection algorithm for HEVC,” IEEE International Conference on Multimedia and Expo Workshops (ICMEW), vol., no., pp.1,5, 15-19, July 2013.
[25] G. Bjøntegaard, “Calculation of average PSNR differences between RD curves,” document VCEG-M33, Austin, TX, USA, Apr. 2001, pp. 1-4.
[26] I. K. Kim, J. Min, T. Lee, W. J. Han, and J. Park, “Block partitioning structure in the HEVC Standard,” IEEE Transaction on Circuits System Video Technology, vol. 22, no. 12, Dec. 2012, pp. 1697-1706.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top