跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱吉賢
研究生(外文):Chi-hsien Chiu
論文名稱:具室內節能與環境巡邏功能之輪型機器人
指導教授:王文俊王文俊引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:104
中文關鍵詞:輪型機器人自主避障人員偵測室內定位
相關次數:
  • 被引用被引用:1
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出以輪型機器人為基礎的室內節能與環境安全功能,期望將這兩個功能應用在辦公室、學校或是家庭等室內空間,達到室內節能省電及安全維護。在室內節能方面,透過Kinect感測器的深度資訊以及紅外線資訊達成輪型機器人的自主避障與室內定位的功能,並應用骨架追蹤偵測人員,主控電腦端會根據輪型機器人的偵測結果關閉無人區域的電器,並將室內區域的用電情形儲存於主控電腦端之網路資料庫中,供使用者了解。在環境安全方面,透過Kinect深度資訊和聲音偵測,機器人可以在黑暗中偵測環境中是否有入侵者,若偵測到入侵者,就會擷取入侵者影像並通知使用者,讓使用者在第一時間得到入侵者的資訊。經多次實驗證實,本論文之輪型機器人藉由靈活地巡邏室內空間,以及在深夜成
This study proposes a system using a mobile robot for indoor energy-saving and safety navigation functions. The two functions are applied to fulfill the energy-saving function and safety maintenance indoors, such as office, school, and home. For the first function, the depth data and IR data captured from Kinect sensor are used to accomplish the obstacle avoidance and indoor localization of the mobile robot, and skeleton tracking is used to detect human. If there is nobody in the specific region, the center PC will automatically turn off the lights and air-conditions of the region. Furthermore, the center PC updates the state of indoor power supply to the web database and provide it to the users. For the second function, the depth data and sound detection captured from Kinect sensor are used to accomplish intruder detection in the indoor dark environment. When the mobile robot successfully detects the intruder, it will captures the picture of intruder and notice the users. According to a series of experiments, we are satisfied with the results of the two systems.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 2
1.3論文目標 5
1.4論文架構 6
第二章 系統架構與硬體架構 7
2.1 系統架構 7
2.2 硬體架構 8
2.2.1輪型機器人之硬體介紹 9
2.2.2主控電腦端 17
第三章 室內節能功能 21
3.1自主避障 22
3.1.1擷取深度資訊 23
3.1.2轉換深度資訊 24
3.1.3位置資訊之水平投影 27
3.1.4障礙物分布分析 29
3.1.5障礙物趨勢分析 31
3.1.6速度調整器 31
3.2室內定位 33
3.2.1擷取紅外線影像 34
3.2.2切換依據 35
3.2.3辨識紅外線標誌 36
3.3人員偵測 41
3.3.1偵測範圍 42
3.3.2克服人員姿態與關節點的追蹤 47
3.3.3偵測時機 50
3.4主控電腦端功能 50
3.4.1區域節能 50
第四章 環境安全功能 54
4.1入侵者偵測 55
4.1.1深度背景相減法 56
4.1.2形態學處理 58
4.1.3擷取前景的ROI 59
4.1.4擷取入侵者 60
4.2 聲音追蹤 61
4.2.1參數調整 62
4.2.2聲音方位辨別 63
4.2.3逃跑模式 63
4.3主控端功能 64
第五章 實驗成果 66
5.1實驗流程 66
5.2 實驗場景介紹 68
5.3 任務一,室內節能 71
5.3.1室內節能任務流程 71
5.3.2實驗測試結果 74
5.4任務二,環境安全 78
5.4.1環境安全任務流程 78
5.4.2實驗測試結果 80
5.5任務三,網頁功能 81
第六章 結論與未來展望 84
6.1結論 84
6.2 未來展望 85
參考文獻 87

[1] iRobot Corporation: Robots that Make a Difference相關網站,
http://www.irobot.com/us,2014年7月。
[2] 新光保全 保全機器人系統相關網站,
http://www.sks.com.tw/about/menu1/index.html,2014年7月。
[3] ROBOSOFT-Kompaï相關網站,
http://www.robosoft.com/robotic-solutions/healthcare/kompai/index.html ,2014年7月。
[4] S. Kim, and H. Kim “Systematic Optimal Design of Overlapped Ultrasonic Sensor Ring for High Performance Obstacle Detection,” in Proceedings IEEE International Conference on Advanced Robotics, Tallinn, Estonia, Jun. 2011, pp. 600-605.
[5] J. Lin, B. Liu, X. Chen, H. Zhao, J. Zhao, and J. Yan, “Research on ODMM obstacle avoidance fuzzy navigation based on ultrasonic-absolute-positioning,” in Proceedings IEEE International Conference on Electrical and Control Engineering, Wuhan, China, June. 2010, pp. 1725-1729.
[6] 許哲瑋(王文俊教授指導),結合機械手臂之多功能輪型機器人,國立中央大學電機工程學系碩士學位論文,2012年6月。
[7] D. Nair, and J. K. Aggarwal, “Moving Obstacle Detection From a Navigating Robot,” IEEE Transactions on Robotics and Automation, vol.14, no. 3, pp. 404-416, Aug. 2002.
[8] A. Ohya, A. Kosaka, and A. Kak, “Vision-Based Navigation by a Mobile Robot with Obstacle Avoidance Using Single-Camera Vision and Ultrasonic Sensing,” IEEE Transactions on Robotics and Automation, vol.14, no. 6, pp. 969-978, Aug. 2002.
[9] T. H. Chen, T. Y. Chen, and Z. X. Chen, “An intelligent people-flow counting method for passing through a gate,” in Proceedings of IEEE International Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, June 2006, pp. 1-6.
[10] A. Ohya, A. Kosaka, and A. Kak, “Vision-Based Navigation by a Mobile Robot with Obstacle Avoidance Using Single-Camera Vision and Ultrasonic Sensing,” IEEE Transactions on Robotics and Automation, vol.14, no. 6, pp. 969-978, Aug. 2002.
[11] L. Ren, W. Wang, and Z. Du, “A New Fuzzy Intelligent Obstacle Avoidance Control Strategy for Wheeled Mobile Robot,” IEEE Transactions on Mechatronics, vol.16, no. 4, pp. 778-783, Aug. 2011.
[12] B. Chen, Z. Cai, Z. Xiao, J. Yu, and L. Liu, “Real-time Detection of Dynamic Obstacle Using Laser Radar,” in Proceedings IEEE International Conference on Young Computer Scientists, Hunan, China, Nov. 2008, pp. 1728-1732.
[13] W. K. Ho, and S. M. Low, “An Investigation of the Use of Kinect Sensor for Indoor Navigation,” in Proceedings IEEE International Conference on TENCON, Cebu, Philippines, Nov. 2012, pp. 1-5.
[14] N. Moriyama, K. Takahashi, T. Yokota, T. Cho, K. Kobayashi, K. Watanabe, and Y. Kurihara, “Development of a Kinect-sensor-based Navigation Component for JAUS Compliant Mobile Robots,” in Proceedings IEEE International Conference on SICE, Akita, Japan, Aug. 2012, pp. 824-827.
[15] K. Kamarudin, S. M. Mamduh, A. Y. M. Shakaff, S. M. Saad, A. Zakaria, A. H. Abdullah, and L. M. Kamarudin, “Method to Convert Kinect's 3D Depth Data to a 2D Map for Indoor SLAM,” in Proceedings IEEE International Conference on Signal Processing and its Applications, Kuala Lumpur, Singapore, Mar. 2013, pp. 247-251.
[16] H. Zhang, L. Zhang, and J. Dai, “Landmark-based Localization for Indoor Mobile Robots with Stereo Vision,” in Proceedings IEEE International Conference on Intelligent System Design and Engineering Application, Hainan, China, Jan. 2012, pp. 700-702.
[17] X. Xu, and Y. Guo, “Landmark Design Using Projective Invariant for Mobile Robot Localization,” in Proceedings IEEE International Conference on Robotics and Biomimetics, China, Kunming, Dec. 2006, pp. 852-857.
[18] C. Becker, J. Salas, K. Tokusei, and J. C. Latornbe, “Reliable Navigation Using Landmarks,” in Proceedings IEEE International Conference on Robotics and Automation , Japan, Nagoya, May 1995, pp. 401-406.
[19] A. Gopalakrishnan, S. Greene, and A. Sekmen, “Vision-based Mobile Robot Learning and Navigation,” in Proceedings IEEE International Conference on Robot and Human Interactive Communication, Italy, Roma, Aug. 2005, pp. 48-53.
[20] Y. Zhuang, “Hybrid Mobile Robot Indoor Localization Using Large-Scale Metric-Topological Map,” in Proceedings IEEE International Conference on Intelligent Control and Automation, Dalian, China, Oct. 2006, pp. 9057-9062
[21] B. S. Choi, and J. J. Lee, “Sensor Network Based Localization Algorithm using Fusion Sensor-Agent for Indoor Service Robot,” IEEE Transactions on Consumer Electronics, vol.56, no. 3, pp. 1457-1465, Aug. 2010.
[22] Y. Han, S. L. Chung, J. S. Yeh, and Q. J. Chen, “Localization of RGB-D Camera Networks by Skeleton-based Viewpoint Invariance Transformation,” in Proceedings IEEE International Conference on Systems, Man, and Cybernetics, Manchester, English, Oct. 2013, pp. 1525-1530.
[23] W. H. Ong, T. Koseki, and L. Palafox, “Unsupervised Human Activity Detection with Skeleton Data From RGB-D Sensor,” in Proceedings IEEE International Conference on Computational Intelligence, Communication Systems and Networks, Madrid, Spain, June. 2013, pp. 30-35.
[24] D. Merad, K. E. Aziz, and N. Thome, “Fast People Counting Using Head Detection From Skeleton Graph,” in Proceedings IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, USA, Sept. 2010, pp. 233-240.
[25] C. C. Chen, H. H. Lin, and O. T. C. Chen, “Tracking and counting people in visual surveillance systems,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, May 2011, pp. 1425-1428.
[26] T. H. Chen, T. Y. Chen, and Z. X. Chen, “An intelligent people-flow counting method for passing through a gate,” in Proceedings of IEEE International Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, June 2006, pp. 1-6.
[27] X. Lu, C. C. Chen, and J. K. Aggarwal, “Human Detection Using Depth Information by Kinect,” in Proceedings IEEE International Conference on Computer Vision and Pattern Recognition Workshops, Colorado, USA, June. 2011, pp. 15-20.
[28] T. Gill, J. M. Keller, D. T. Anderson, and R. H. Luke, “A System for Change Detection and Human Recognition in Voxel Space Using the Microsoft Kinect Sensor,” in Proceedings IEEE International Conference on Applied Imagery Pattern Recognition Workshop, Washington, USA, Oct. 2011, pp. 1-8.
[29] Microsoft Kinect for Windows Programming Guide
http://msdn.microsoft.com/en-us/library/hh855348.aspx
[30] Arduino Mega 相關網站,
http://arduino.cc/en/Main/arduinoBoardMega,2014年7月。
[31] Pololu High Power Motor Driver 18v25相關網站,
http://www.pololu.com/product/758,2014年7月。
[32] 嵌入式單板電腦MIO-5290相關網站,
http://www.advantech.tw/,2014年7月。
[33] EDIMAX無線網路卡相關網站,
http://www.edimax.com.tw/tw/produce_detail.php?pd_id=301&;pl1_id=1&;pl2_id=68,2014年7月。
[34] XAMPP相關網站,
https://www.apachefriends.org/zh_tw/index.html,2014年7月。
[35] Kinect Sensor相關網站,
http://msdn.microsoft.com/en-us/library/hh438998.aspx,2014年7月。
[36] Kinect Studio相關網站,
http://msdn.microsoft.com/en-us/library/hh855389.aspx,2014年7月。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top