跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉金璋
研究生(外文):Chin-chang Yeh
論文名稱:線放電切割與電解磨削應用於多晶矽晶碇之加工特性研究
論文名稱(外文):Processing Characteristics of Polycrystalline Silicon by Wire Electrical Discharge Machining and Electrochemical Grinding
指導教授:顏炳華顏炳華引用關係
指導教授(外文):Biing-hwa Yan
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:152
中文關鍵詞:線放電切割加工電解磨削磷加工液多晶矽石墨烯
外文關鍵詞:wire electrical discharge machiningelectrochemical grindingphosphorous dielectricpolycrystalline silicongraphene
相關次數:
  • 被引用被引用:3
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
現今再生能源的研究與發展已成為全球共識,當中以太陽能電池相關技術發展最受矚目。太陽能電池製造時,晶碇的切割製程是決定成本的主要關鍵。現有切割方式則以多線鋸加工為主,其優點為可複線式加工,加工效率高。但此方式為接觸式加工,過程中易產生加工應力進而造成晶碇破裂損壞。其游離磨粒加工時無法完全使用,並且在回收時過程複雜及會造成環境污染。因此,近年來相關研究文獻中提出,採用線放電加工方式切割矽晶材料,使用此方式可有效改善線鋸加工之缺點。但目前仍以加工單晶矽材料為主,而多晶矽材料的線放電加工方面文獻甚少,主要原因為多晶矽材料具有晶界多變、電阻大等特性,導致無法順利進行線放電切割加工。但是多晶矽材料具有製程簡單、成本較低與光電效率穩定等優勢,因此更需要發展新的方法,改善多晶矽材料的加工問題。
本論文中採用線放電切割與電解磨削的兩種製程方式,對多晶矽材料之加工特性進行研究。本文分為兩大研究方向,第一部份為應用線放電製程於多晶矽材料進行切割加工,探討放電參數對於多晶矽材料切割加工時的影響,並調製磷加工液對其加工效率與特性進行改善。第二部分為應用電解磨削製程對線放電切割後表面缺陷進行磨削,改善表面粗糙度及異質層的去除,使用田口實驗法進行實驗規劃,經由分析後得到製程的主要影響因子。後續於電解加工液中加入石墨烯材料,藉由此材料的高硬度與高磨潤性,改善原有的表面加工特性,並探討製程參數對於加工時的影響。
經由本論文實驗後,線放電切割加工方面,證實磷加工液可以有效使放電過程中的放電能量增強與導電度提升,可以在不改變現有加工參數的條件下,提升切割速度與降低切口損失。電解磨削表面加工方面,加入石墨烯材料後,可有效改善放電加工後殘留之表面問題並減少加工時的摩擦力進而提升磨削刀具壽命。期望藉由本論文之研究成果作為產學界研究之參考。
Nowadays, the researches and developments of renewable energy have become the universal consensus. Among them, the developments of solar cell attract the greatest attention. In the process of making solar cell, the cutting process of silicon ingot is the key to determine the cost. Multi-wire saw has been used in the traditional cutting to conduct machining process. Its advantage is to multi-wire-type processing, which heighten the processing efficiency. However, multi wire requires great tension and produces stress that could easily damage the silicon ingot. In addition, during the process, abrasive could not be used completely. The complicated recycle processes of abrasive contaminate the environment. Thus, in recent years, related research proposed in the literature, by using wire electrical discharge machining (WEDM) cutting silicon ingot, this method can effectively improve the shortcomings multi-wire saw. WEDM has been applied onto the single-crystal silicon cutting. Most researches adopted single-crystal silicon as the process material. However, it is hard to find a literature review on the machining characteristics of a polycrystalline silicon surface and the quality improvements after processing. The main reasons of polycrystalline silicon are changing boundaries, high electrical resistance and other characteristics, which lead WEDM can not be process smoothly. Polycrystalline silicon manufacturing process is simple, lower cost, stable photoelectric efficiency and other advantages. Therefore, a new method to improve the polycrystalline silicon processing problems needs to be developed.
This thesis adopts machining characteristics of polycrystalline silicon research by WEDM and electrochemical grinding (ECG) these two methods. This paper divided into two research directions. The first part discusses when the polycrystalline silicon by using WEDM processing, the impact of discharge parameters on the polycrystalline silicon and the adjustments of phosphorous dielectric improve its processing efficiency and processing characteristics. The second part is the application of ECG surface defects after WEDM be grinded, it improves the removal of surface roughness and affected layer by using Taguchi-method experiment planning, the main factor affects the analysis process to get through. Follow added graphene in dielectric. By using the high hardness and high lubricity of graphene to improve processing characteristics of the original surface and explore the impact of process parameters for the processing.
After the experiments by this thesis, it is sure that in the WEDM processing, phosphorous dielectric improves the discharge process effectively and makes the discharge energy booster to enhance conductivity. Under the no-changing existed processing parameters condition, it improves the cutting speed and reduces kerf loss. In the ECG processing, by adding graphene, the surface problems effectively improved after WEDM machining residues and reduce friction force during processing and it enhances the grinding tool life. It is expected the results of this thesis could be referenced for the future research in both industrials and academic field.
中文摘要---i
英文摘要---iii
誌 謝---v
目 錄---vii
圖目錄---xi
表目錄---xvi
第一章 緒論---1
1-1 研究背景---1
1-2 研究動機---4
1-3 文獻回顧---6
1-3-1 線放電切割加工---6
1-3-2 矽晶圓切割加工---10
1-3-3 電解磨削加工---11
1-3-4 石墨烯於加工上之應用---12
1-4 研究目的---13
1-5 本論文之架構---14
第二章 線放電製程應用於多晶矽晶碇切割加工特性之探討---16
2-1 前言---16
2-2 基本原理---17
2-2-1 線放電切割加工之原理---17
2-2-2 線放電切割加工之材料去除機制---19
2-2-3 線放電切割加工參數之影響---21
2-2-4 線放電切割加工之特性---26
2-3 實驗流程---29
2-4 實驗設置---31
2-4-1 實驗材料---31
2-4-2 實驗設備---33
2-5 線放電應用於多晶矽切割加工實驗之加工參數設定---34
2-6 實驗結果與討論---35
2-6-1 實驗參數對線放電加工後切口損失之影響---35
2-6-2 實驗參數對線放電加工時切割速度之影響---38
2-6-3 實驗參數對線放電加工後表面粗糙度之影響---42
2-6-4 放電頻率於加工電壓改變下對切割加工特性之影響---47
2-7 結論---49
第三章 應用磷加工液改善多晶矽晶碇於線放電切割加工特性之探討---50
3-1 前言---50
3-2 基本原理---51
3-2-1 電化學加工之原理---51
3-2-2 電雙層之原理---52
3-2-3 陽極極化曲線及特徵說明---53
3-2-4 電化學放電火花形成之原理---55
3-3 實驗流程---57
3-4 實驗材料與實驗之加工參數設定---58
3-5 實驗結果與討論---61
3-5-1 磷加工液實驗參數對線放電加工後材料損失之影響---61
3-5-2 磷加工液實驗參數對線放電加工時切割速度之影響---64
3-5-3 磷加工液實驗參數對線放電加工後表面粗糙度之影響---68
3-5-4 磷加工液實驗參數對加工表面殘留元素之影響---73
3-6 結論---74
第四章 電解磨削與石墨烯應用於多晶矽晶碇表面加工特性之探討---75
4-1 前言---75
4-2 基本原理---76
4-2-1 機械磨削加工機制---76
4-2-2 電解磨削加工機制---79
4-2-3 田口實驗規劃法---80
4-2-4 石墨烯材料---84
4-3 實驗流程---87
4-4 實驗設置---89
4-4-1 實驗材料---89
4-4-2 實驗設備---93
4-5 實驗結果與討論---97
4-5-1 田口實驗在電解磨削於多晶矽表面加工之實驗規劃---97
4-5-2 田口實驗在電解磨削於多晶矽表面加工之實驗結果---100
4-5-3 田口實驗結果驗證---103
4-5-4 應用石墨烯改善多晶矽表面加工特性實驗規劃---104
4-5-5 應用石墨烯改善多晶矽表面加工實驗結果與討論---105
4-6 結論---121
第五章 總結論---123
參考文獻---125
作者簡歷---131


[1] H. J. Moller, C. Funke, M. Rinio and S. Scholz, “Multicrystalline silicon for solar cells”, Thin Solid Films, Vol. 487, pp. 179-187, 2005.
[2] T. Taishi, K. Hoshikawa, Y. Ohno and I. Yonenaga, “Behavior of dislocations due to thermal shock and critical shear stress of Si in Czochralski crystal growth”, Physica B-Condensed Matter, Vol. 404, pp. 4612-4615, 2009.
[3] K. Fujiwarw, K. Pan, K. Sawada, M. Tokairin, N. Usami, Y. Nose, A. Nomura, T. Shishido and K. Nakajima, “Directional growth method to obtain high quality polycrystalline silicon from its melt”, Journal of Crystal Growth, Vol. 292, pp. 282-285, 2006.
[4] H. J. Moller, “Basic mechanisms and models of multi-wire sawing”, Advanced Engineering Materials, Vol. 6, pp. 501-513, 2004.
[5] H. J. Moller, “Wafering of silicon crystals”, Physcia Status Solidi A - Applications and Materials Science, Vol. 203, pp. 659-669, 2006.
[6] 許坤明,非傳統加工,全華圖書,台北市,民國九十九年。
[7] D. K. Aspinwall, S. L. Soo, A. E. Berrisford and G. Walder, “Workpiece surface roughness and integrity after WEDM of Ti-6Al-4V and Inconel 718 using minimum damage generator technology”, CIRP Annals-Manufacturing Technology, Vol.57, pp. 57, 2008.
[8] J. W. Liu, T. M. Yue and Z. N. Guo, “Wire electrochemical discharge machining of Al2O3 particle reinforced aluminum alloy 6061”, Materials and Manufacturing Processes, Vol.24, pp. 446-453, 2009.
[9] N. G. Patil and P. K. Brahmankar, “Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis”, International Journal of Advanced Manufacturing Technology, Vol. 51, pp. 599-610, 2010.
[10] Y. F. Luo, C. G. Chen and Z. F. Tong, “Investigation of silicon wafering by wire EDM”, Journal of Materials Science, Vol. 27, pp. 5805-5810, 1992.
[11] M. Kunieda and S. Ojima, “Improvement of EDM efficiency of silicon single crystal through ohmic contact”, Journal of the International Societies for Precision Engineering and Nanotechnology, Vol. 24, pp. 185-190, 2000.
[12] Y. Uno, A. Okada, Y. Okamoto and T. Hirano, “High performance slicing method of monocrystalline silicon ingot by wire EDM”, Initiatives of Precision Engineering at the Beginning of a Millennium, 10th International Conference on Precision Engineering (ICPE), pp. 219-223, 2002.
[13] W. Y. Peng and Y. S. Liao, “Study of electrical discharge machining technology for slicing silicon ingots,” Journal of Materials Processing Technology, Vol. 140, pp.274-279, 2003.
[14] H. Takion, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura and M. Kunieda, “Cutting of polished single-crystal silicon by wire electrical discharge machining”, Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology, Vol. 28, pp. 314-319, 2004.
[15] H. Takion, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura and M. Kunieda, “High-quality cutting of polished single-crystal silicon by wire electrical discharge machining”, Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology, Vol. 29, pp. 423-430, 2005.
[16] H. Takion, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura and M. Kunieda, “Contouring of polished single-crystal silicon plates by wire electrical discharge machining”, Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology, Vol. 31, pp. 358-363, 2007.
[17] E. Bamberg and D. Rakwal, “Experimental investigation of wire electrical discharge machining of gallium-doped germanium”, Journal of Material Processing Technology, Vol. 197, pp. 419-427, 2008.
[18] W. Wang, Z. D. Liu, Z. J. Tian, Y. H. Huang and Z. X. Liu, “High efficiency slicing of low resistance silicon ingot by wire electrolytic-spark hybrid machining”, Journal of Material Processing Technology, Vol. 209, pp. 3149-3155, 2009.
[19] D. Rakwal and E. Bamberg, “Slicing, cleaning and kerf analysis of germanium wafers machined by wire electrical discharge machining”, Journal of Material Processing Technology, Vol. 209, pp. 3740-3751, 2009.
[20] H. Takahashi, Y. Okamoto, Y. Uno, A. Okada, Y. Abe and S. Takata, “Investigation on multi-wire EDM slicing method for polycrystalline silicon ingot”, 3rd International Conference of Asian Society for Precision Engineering and Nanotechnology, 2009.
[21] M. Kojima, “Development of new wafer slicing equipment”, Sumitomo Metal, Vol. 34, pp. 218-224, 1990.
[22] I. Ken-Ichi and S. Hitoshi, “A basic study on vibration muti-wire sawing using wire fixed diamond grain”, The Japan Society for Precision Engineering, Vol. 121, pp. 1028-1031, 1995.
[23] H. Suwabe, “Influence of processing condition on properties of beads of diamond wire saws”, Journal of Material Science Letter, Vol. 17, pp. 69-71, 1998.
[24] K. Takahata, S. Aoki and T. Sato, “Fine surface finishing method for 3-dimensional micro structures”, IEEE MEMS, pp. 73-78, 1996.
[25] E. S. Lee, “Machining characteristics of the electro polishing of stainless steel (STS316L)”, The International Journal of Advanced Manufacturing Technology, Vol. 16, pp. 591-599, 2000.
[26] H. Ramasawmy and L. Blunt, “3D surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces”, International Journal of Machine Tools &; Manufacture, Vol. 42, pp. 567-574, 2002.
[27] L. S. Andrade, S. C. Xavier, R. C. Rocha-Filho, N. Bocchi and S. R.Biaggio, “Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration”, Electrochimica Acta, Vol. 50, pp. 2623-2627, 2005.
[28] J. Samuel, J. Rafiee, P. Dhiman, Z. Z. Yu and N. Koratkar, “Graphene Colloidal Suspensions as High Performance Semi-Synthetic Metal-Working Fluids”, American Chemical Society, Vol.115, pp.3410-3415, 2011.
[29] D. Berman, A. Erdemir and A.V. Sumant, “Few layer graphene to reduce wear and friction on sliding steel surfaces”, Carbon, Vol.54, pp.454-459, 2013.
[30] D. Berman, A. Erdemir and A. V. Sumant, “Graphene: a new emerging lubricant”, Materials Today, Volume, Vol.17, pp.31-42, 2014.
[31] Z. L. Cheng and X. X. Qin, “Study on friction performance of graphene-based semi-solid grease”, Chinese Chemical Letters, Vol.2894, pp.3, 2014.
[32] H. Kinoshita, Y. Nishina, A. A. Alias and M. Fujii, “Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives”, Carbon, Vol. 66, pp. 720-723, 2014.
[33] 齊藤長男,線放電切割加工,蘇品書譯,復漢出版社,台南市,民國八十六年。
[34] 鳳承三郎、蒼藤尚雄,放電加工,鄒大鈞譯,復漢出版社,台南市,民國五十九年。
[35] 張渭川,圖解放電加工的結構與實用技術,全華圖書,台北市,民國八十六年。
[36] 林宏彥,「絕緣液中添加鋁粉對切割放電加工之影響」,國立中央大學,碩士論文,民國93年。
[37] 崔海平,「電化學結合電泳精密拋光不鏽鋼之研究」,國立中央大學,博士論文,民國96年。
[38] 尤俊欽,「結合電化學與電泳沉積之微孔複合加工研究」,國立中央大學,碩士論文,民國96年。
[39] V. Fascio, R. Wüthrich and H. Bleuler, “Spark assisted chemical engraving in the light of electrochemistry”, Electrochimica Acta, Vol. 49, pp. 3997-4003, 2004.
[40] D. Rakwal and E. Bamberg, “Slicing, cleaning and kerf analysis of germanium wafers machined by wire electrical discharge machining”, Journal of Material Processing Technology, Vol. 209, pp. 3740-3751, 2009.
[41] T. Hryniewicz, R. Rokicki and K. Rokosz, “Surface characterization of AISI 316L biomaterials obtained by electro polishing in a magnetic field”, Surface &; Coating Technology, Vol. 202, pp. 1668-1673, 2008.
[42] L. M. Cook, “Chemical processes in glass polishing”, Journal of Non-Crystalline Solids, Vol. 120, pp.152-171, 1990.
[43] V. K. Jain, “Simulation of surface generated in abrasive flow machining (AFM) Process”, Robotics and Computer Integrated Manufacturing, Vol. 15, pp. 403-412, 1999.
[44] B. Bhushan, Introduction to tribology, John Wiley and Sons, New York, 2002.
[45] 田口玄一,田口式品質工程概論,中國生產力中心,台北市,民國九十年。
[46] 李輝煌,田口方法品質設計的原理與實務,高立圖書公司,台北市,民國九十一年。
[47] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, Vol. 321, pp. 385-388, 2008.
[48] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Mater, Vol. 6, pp. 183-191, 2007.
[49] C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)”, Key Engineering Material, Vol. 196, pp. 149-166, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top