跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/27 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張珮儀
研究生(外文):Pei-yi Chang
論文名稱:利用二醇類溶劑製備奈米氧化鋅之研究
論文名稱(外文):Preparation of the nano zinc oxide by glycol solvent
指導教授:李俊福李俊福引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:118
中文關鍵詞:二醇類溶劑光觸媒氧化鋅
外文關鍵詞:GlycolPhotocatalystZinc oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
一般光觸媒的材料有二氧化鈦(TiO2)、氧化鋅(ZnO)等,其中以二氧化鈦為主流被廣泛的研究,但在實際應用方面,還是受到侷限。氧化鋅與二氧化鈦具相同性質,且鋅金屬較鈦金屬價格低廉,因此氧化鋅為最有潛力替代二氧化鈦的材料之一。製備奈米氧化鋅包含氣相沉積法、物理粉碎法、溶膠凝膠法等,但如何大規模且經濟化的生產是必須要克服的關鍵問題,至目前為止,在大多數的合成報告中,氧化鋅奈米晶體製備成本均非常高。本研究選取二醇類溶劑,利用其會生成分子間氫鍵的特性,控制小聚集的形成,並搭配簡單、低成本的實驗程序,以製備出奈米級氧化鋅晶體,同時探討製備溶劑、前驅物種類、水化反應、製備溫度、製備酸鹼度、反應時間等反應因子與氧化鋅晶體物化性質之關係,並求得其最高光催化效率之反應條件。
本研究實驗結果顯示,提高製備溫度有助於提高比表面積與純度,並增加其光降解效率,以50℃為製備溫度效果最佳;延長製備反應時間,會使氧化鋅晶體粒徑變大,並有助於提高其純度與光降解效率。提高製備氧化鋅之酸鹼度會改變表面結構,同時亦提高其比表面積與晶體成晶狀況,有助於增加污染物的光降解速率。其中,以乙二醇為製備溶劑、氯化鋅為前趨物,在無水、溫度50℃、酸鹼度為12的狀態下反應48小時,可得純度最高、光催化效率最佳之奈米氧化鋅。然而氯化鋅等物質在二醇類或在含水二醇類溶劑中之產物形成機制,與光催化過程中污染物物種的變化情形等有待後續深入研究。
General photocatalyst included titanium dioxide (TiO2), zinc oxide (ZnO) and so on, and titanium dioxide has been main widely studied. However, in practical application, titanium dioxide is still subjected to limitations. Zinc oxide have the same nature with titanium dioxide, and zinc’s price is lower than titanium, therefore, zinc oxide is the one of the potential materials to replace titanium dioxide. Preparation of nano zinc oxide involves many methods, like vapor deposition, physical crushing method, sol-gel method, etc., but how to produce economically large-scale product is the key issue that must be overcome. Preparation of nano zinc oxide has very high cost in the majority of the synthesis report. This study selected glycol as a key solvent, using its characteristic that can generate intermolecular hydrogen bonds controlling the formation of small aggregates. This study used a simple, low-cost experimental procedure to prepare the nano zinc oxide, and also discussed the factors such as solvents, precursor species, hydration, temperature, pH, reaction time, etc., which influenced physical and chemical properties of zinc oxide. The reaction conditions to obtain the highest photocatalytic efficiency are also investigated.
The results showed that as the temperature increased surface area, the purity of zinc oxide and its efficiency of the photodegradation also increased. Thus, it is concluded that 50 ℃ is the optimal temperature. Extending reaction time, the zinc oxide will grain larger size, helping to improve its purity and the efficiency of the photodegradation. Higher pH will not only change the surface structure, but also improve its surface area and crystal growth, helping to increase the rate of photodegradation of pollutants. Among them, ethylene glycol as the solvent, zinc chloride as the predecessor, the absence of water, 50 ℃, pH=12 and 48 hours are the optimal conditions to obtain the nano zinc oxide with highest purity, and inhanced efficiency of the photodegradation.
目錄…………………………………………………………………………… I
圖目錄………………………………………………………………………… V
表目錄…………………………………………………………………………........... VIII

第一章 研究緣起與目的………………………………………………..................... 1

1-1 研究緣起…………………………………………………………......... 1
1-2 研究目的與內容…………………………………………………......... 3

第二章 文獻回顧………………………………………………………………......... 4

2-1 光觸媒與其催化機制……………………………………………..…... 4
2-1-1 常見光觸媒材料……………………………………...…......... 4
2-1-2 光催化理論…………………………………………………… 5
2-1-3 光催化機制…………………………………………………… 6
2-1-4 操作條件對光催化影響……………………………………… 8
2-1-4-1 污染物溶液的酸鹼值……………………………… 8
2-1-4-2 初使污染物的濃度………………………………… 9
2-1-4-3 照射光源的波長…………………………………… 10
2-1-4-4 其他操作條件……………………………………… 10
2-2 氧化鋅理化特性及製備方法….……...…………………………......... 12
2-1-1 氧化鋅特性介紹.…………………………….……………….. 13
2-1-2 氧化鋅製備方法.……………………..……………………..... 14
2-3 反應因子與製備關係性…...………………………………………...... 17
2-3-1 反應溫度……………………………………………................ 18
2-3-2 反應時間…………………………………………………........ 20
2-3-3 溶劑…………………………………………………………… 20
2-3-4 酸鹼度………………………………………………………… 22
2-3-5 前驅物種類………………………………………………….... 23
2-3-6 水含量多寡…………………………………………………… 23
2-4 吸附理論與反應動力學…………………...………………………...... 24
2-4-1 吸附類型……………………………………………………… 25
2-4-2 等溫吸附模式………………………………………………… 26
2-4-3 等溫吸附曲線………………………………………………… 30
2-4-4 反應動力學…………………………………………………… 32

第三章 研究方法……………………………………………………………………. 35

3-1 實驗內容…………………….………………………………………… 35
3-2 實驗設備…………………………………………………………......... 37
3-2-1 實驗儀器設備………………………………………………… 37
3-2-2 光催化反應器………………………………………………… 40
3-3 實驗藥品與材料…………………………………………………......... 42
3-4 實驗方法……………………………………………………….……… 44
3-4-1 二醇類溶劑製備氧化鋅實驗…..…………………………….. 44
3-4-2 實驗分析與前處理………………………………………….. 46
3-4-2-1 TEM(Transmission electron microscopy)……… 46
3-4-2-2 SEM(Scanning electron microscopy)………….. 47
3-4-2-3 XRD(X-ray diffraction)………………………… 47
3-4-2-4 ASAP(Accelerated Surface Area and Porosimetry) 48
3-4-2-5 UV-vis(Ultraviolet–visible spectroscopy)……… 48
3-4-3 氧化鋅吸附實驗……………………………………………… 48
3-4-4 氧化鋅總鋅濃度檢測………………………………………… 49
3-4-5 光催化實驗…………………………………………………… 50

第四章 結果與討論…………………………………………………………............. 52

4-1 氧化鋅基本特性分析…………………………..................................... 52
4-1-1 水製備氧化鋅之特性分析…………………………………… 52
4-1-2 二醇類溶劑製備氧化鋅之特性分析………………………… 53
4-2 氧化鋅製備之影響因子….……………………………………............ 57
4-2-1 前驅物種類對氧化鋅製備之影響…………………………… 58
4-2-2 水化反應對氧化鋅製備之影響…………………………..….. 59
4-2-3 反應溫度對氧化鋅製備之影響…………………………..….. 59
4-2-4 反應時間對氧化鋅製備之影響……………………………… 64
4-2-5 酸鹼度對氧化鋅製備之影響………………………………… 70
4-3 研究標的初步試驗………………………………………………......... 75
4-3-1 剛果紅吸附實驗……………………………………………… 75
4-3-2 亞甲藍吸附實驗……………………………………………… 77
4-4 催化條件對氧化鋅光催化之影響………………………………......... 78
4-4-1 初始污染物濃度對光催化之影響…………………………… 78
4-4-2 光源時間對光催化之影響…………………………………… 82
4-4-3 溶液酸鹼度對光催化之影響………………………………… 83
4-4-4 循環水溫對光催化之影響…………………………………… 85
4-4-5 催化劑劑量對光催化之影響………………………………… 86
4-5 氧化鋅製備差異對光催化影響…………………………………......... 88
4-5-1 不同製備溶劑對光催化影響………………………………… 88
4-5-2 不同酸鹼度對光催化影響…………………………………… 89
4-5-3 不同反應溫度對光催化影響………………………………… 90
4-4-4 不同反應時間對光催化影響………………………………… 92
4-5-5 總鋅濃度測定…………………………………….................... 93

第五章 結論與建議.…………………………………………………………............ 96

5-1 結論………………………………………………………………......... 96
5-2 建議………………………………………………………………......... 98

參考文獻…………………………………………………………………................... 99

[1] T. Sekiguchi, N. Ohashi, and Y. Terada, "Effect of hydrogenation on ZnO luminescence," JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, vol. 36, pp. L289-L291, 1997.
[2] V. Golob, A. Vinder, and M. Simonic, "Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents," Dyes and Pigments, vol. 67, pp. 93-97, 2005.
[3] S. Papic, "Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process," Dyes and Pigments, vol. 62, pp. 291-298, 2004.
[4] E. F. Sousa-Aguiar, F. E. Trigueiro, and F. M. Z. Zotin, "The role of rare earth elements in zeolites and cracking catalysts," Catalysis Today, vol. 218-219, pp. 115-122, 2013.
[5] I. K. Konstantinou, T. M. Sakellarides, V. A. Sakkas, and T. A. Albanis, "Photocatalytic Degradation of Selected s-Triazine Herbicides and Organophosphorus Insecticides over Aqueous TiO2 Suspensions," Environ. Sci. Technol., vol. 35, pp. 398-405, 2001.
[6] H.-F. Lin, S.-C. Liao, and S.-W. Hung, "The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst," Journal of Photochemistry and Photobiology A: Chemistry, vol. 174, pp. 82-87, 2005.
[7] B.-J. Liu, T. Torimoto, and H. Yoneyama, "Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents," J. Photochem. Photobiol. A: Chem., vol. 113, pp. 93-97, 1998.
[8] H. Lachheb, E. Puazenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, et al., "Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania," Appl. Catal. B: Environ., vol. 39, pp. 75-90, 2002.
[9] V. Kandavelu, H. Kastien, and K. R. Thampi, "Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts," Applied Catalysis B: Environmental, vol. 48, pp. 101-111, 2004.
[10] A. L. Linsebigler, G. Lu, and J. John T. Yates, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev., vol. 95, pp. 735-758, 1995.
[11] L. Zhang, H. H. Mohamed, R. Dillert, and D. Bahnemann, "Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 13, pp. 263-276, 2012.
[12] I. T. Peternel, N. Koprivanac, A. M. Bozic, and H. M. Kusic, "Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution," J Hazard Mater, vol. 148, pp. 477-84, Sep 5 2007.
[13] N. Daneshvar, D. Salari, and A. R. Khataee, "Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol. 162, pp. 317-322, 2004.
[14] S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, "Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2," Solar Energy Materials and Solar Cells, vol. 77, pp. 65-82, 2003.
[15] A. Akyol, H. C. Yatmaz, and M. Bayramoglu, "Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions," Applied Catalysis B: Environmental, vol. 54, pp. 19-24, 2004.
[16] H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, and Y. Gui, "Comparison of dye degradation efficiency using ZnO powders with various size scales," J Hazard Mater, vol. 141, pp. 645-52, Mar 22 2007.
[17] Y. Li, W. Xie, X. Hu, G. Shen, X. Zhou, Y. Xiang, et al., "Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO2 and ZnO," Langmuir, vol. 26, pp. 591-7, Jan 5 2010.
[18] A. Hernández Battez, R. González, J. L. Viesca, J. E. Fernández, J. M. Díaz Fernández, A. Machado, et al., "CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants," Wear, vol. 265, pp. 422-428, 2008.
[19] 陳秀連, "以化學法製備均一粒徑氧化鋅粉體與發光特性之研究," 碩士論文, 材料科技研究所, 國立台灣科技大學, 2003.
[20] C. Klingshirn, "ZnO: material, physics and applications," Chemphyschem, vol. 8, pp. 782-803, Apr 23 2007.
[21] Y. Leprince-Wang, A. Yacoubi-Ouslim, and G. Y. Wang, "Structure study of electrodeposited ZnO nanowires," Microelectronics Journal, vol. 36, pp. 625-628, 2005.
[22] J. Lu and K. M. Ng, "Efficient, One-Step Mechanochemical Process for the Synthesis of ZnO Nanoparticles," Ind. Eng. Chem. Res., vol. 47, pp. 1095-1101, 2008.
[23] M. Ogawa, Y. Natsume, T. Hirayama, and H. Sakata, "Preparation and electrical properties of undoped zinc oxide films by CVD," Journal of Materials Science Letters, vol. 9, pp. 1351-1353, 1990.
[24] Y. Xiao, L. Li, Y. Li, M. Fang, and L. Zhang, "Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method," Nanotechnology, vol. 16, pp. 671-674, 2005.
[25] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, vol. 10, p. 013001, 2009.
[26] J. Tian, L. Chen, J. Dai, X. Wang, Y. Yin, and P. Wu, "Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol–gel process," Ceramics International, vol. 35, pp. 2261-2270, 2009.
[27] X. Li, G. He, G. Xiao, H. Liu, and M. Wang, "Synthesis and morphology control of ZnO nanostructures in microemulsions," J Colloid Interface Sci, vol. 333, pp. 465-73, May 15 2009.
[28] J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan, "Control of ZnO Morphology via a Simple Solution Route," Chem. Mater., vol. 14, pp. 4172-4177, 2002.
[29] S. S. Zumdahl and D. J. DeCoste, Chemical principles: CengageBrain. com, 2012.
[30] T. Sugimoto, "Preparation of monodispersed colloidal particles," Advances in Colloid and Interface Science, vol. 28, pp. 65-108, 1987.
[31] B. Cheng and E. T. Samulski, "Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios," Chem Commun (Camb), pp. 986-7, Apr 21 2004.
[32] H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, et al., "Shape-controlled synthesis of CdS nanocrystals in mixed solvents," Crystal growth &; design, vol. 5, pp. 1801-1806, 2005.
[33] H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, and D. Que, "Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process," Nanotechnology, vol. 15, pp. 622-626, 2004.
[34] M. Yang, G. Pang, L. Jiang, and S. Feng, "Hydrothermal synthesis of one-dimensional zinc oxides with different precursors," Nanotechnology, vol. 17, pp. 206-212, 2006.
[35] Y. J. Lee, N.-K. Park, G. B. Han, S. O. Ryu, T. J. Lee, and C. H. Chang, "The preparation and desulfurization of nano-size ZnO by a matrix-assisted method for the removal of low concentration of sulfur compounds," Current Applied Physics, vol. 8, pp. 746-751, 2008.
[36] X.-C. Guo and P. Dong, "Multistep coating of thick titania layers on monodisperse silica nanospheres," Langmuir, vol. 15, pp. 5535-5540, 1999.
[37] S. D. Faust and O. M. Aly, Adsorption processes for water treatment: Butterworth Boston, 1987.
[38] C. N. Sawyer, P. L. McCarty, G. F. Parkin, 蕭蘊華, and 傅崇德, "環境工程化學下冊," ed: 滄海出版社, 1995.
[39] J. Rouquerol, D. Avnir, C. Fairbridge, D. Everett, J. Haynes, N. Pernicone, et al., "Recommendations for the characterization of porous solids," Pure and Applied Chemistry, vol. 66, pp. 1739-1758, 1994.
[40] D. M. Ruthven, Principles of adsorption and adsorption processes, 1984.
[41] C. Sawyer, P. McCarty, and G. Parkin, Chemistry for environmental engineers, 1978.
[42] S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, "On a theory of the van der Waals adsorption of gases," Journal of the American Chemical Society, vol. 62, pp. 1723-1732, 1940.
[43] 黃慧貞, "土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究," 博士論文, 環境工程研究所, 中央大學, 2006.
[44] C. T. Chiou, Partition and adsorption of organic contaminants in environmental systems: John Wiley &; Sons, 2003.
[45] R. S. Juang, F. C. Wu, and R. L. Tseng, "Mechanism of Adsorption of Dyes and Phenols from Water Using Activated Carbons Prepared from Plum Kernels," J Colloid Interface Sci, vol. 227, pp. 437-444, Jul 15 2000.
[46] Y. S. Ho and G. McKay, "Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash," Journal of Environmental Science and Health, Part A, vol. 34, pp. 1179-1204, 1999.
[47] C. Lizama, J. Freer, J. Baeza, and H. D. Mansilla, "Optimized photodegradation of Reactive Blue 19 on TiO¬2 and ZnO suspensions," Catalysis Today, vol. 76, pp. 235–246, 2002.
[48] 楊芳玫, "由多醣體製備之氧化鋅其光催化效率之研究," 碩士論文, 環境工程研究所, 中央大學, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊