跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭慶偉
研究生(外文):Ching-wei Cheng
論文名稱:有機分子微共振腔光子與激子強耦合之研究
論文名稱(外文):Research on polariton in strongly coupled organic semiconductor microcavities
指導教授:李正中李正中引用關係
指導教授(外文):Cheng-chung Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:89
中文關鍵詞:光子與激子強耦合微共振腔
外文關鍵詞:polaritonmicrocavities
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要研究以DEDOC花青染料分子製作具有J-aggregate分子排列結構之高吸收薄膜,找出最理想的製程方式,使其具有最佳的吸收與發光特性。並觀察將DEDOC J-aggregate薄膜置入微共振腔內形成光子與激子強耦合的現象。
在製備DEDOC J-aggregate薄膜上,我們嘗試了layer-by-layer assembly與旋轉塗佈的方式,並對其光學性質與薄膜物理結構進行分析與探討。發現以layer-by-layer assembly製作之J-aggregate薄膜,結構的緻密性與均勻性較佳,因此在峰值吸收係數與發光均勻性上,比旋轉塗佈的J-aggregate薄膜好。根據薄膜製備分析的結論,我們將優化的DEDOC薄膜置入金屬-介電質反射鏡共振腔中,利用多角度反射頻譜與多角度光激螢光頻譜的量測,在室溫下觀測到polariton的能態,即光子與激子強耦合的發生。我們並比較量測結果與理論的二階模型,驗證polariton能態的產生。

We present a method to fabricate high-absorption thin films composed of DEDOC cyanine dyes, a type of J-aggregates, that will yield the most favorable absorption and emission properties. By placing the thin films in a microcavity, the photon-exciton strong-coupling phenomenon is able to be observed.
The physical structures and optical properties of the J-aggregate thin films fabricated via both layer-by-layer assembly and spin coating are analyzed. We find that the layer-by-layer assembly method produces the most ideal absorption and uniform emissions when compared to the spin coating method, due to the structure and densification of the thin films. Based on the fabrication results, the modifying DEDOC thin films are placed in a metal-dielectric mirror microcavity, and measured by both angle-resolved reflection spectrum and angle-resolved photoluminescence spectrum to observe the polariton states at room temperature. Lastly, the reflection and emission measurements are compared with the two level model prediction as evidence for the polariton existence.

目錄
摘要 iv
Abstract v
誌謝 vi
第一章 緒論 1
1-1 研究背景 1
1-2 有機材料與光強耦合研究發展 5
1-3 研究動機 8
第二章 基礎原理 9
2-1 微共振腔的共振模態與色散關係 9
2-2 微共振腔內光與激子強耦合 11
2-3 薄膜理論 14
2-3-1 垂直入射之光學導納定義 14
2-3-2 單介面之反射與穿透 17
2-3-3 單層膜之反射與穿透 18
2-3-4 多層膜之反射與穿透 21
2-3-5 斜向入射之修正 22
2-4 Kramers-Kronig Relation 23
2-5 J-aggregate染料分子 25
2-6 Layer By Layer Assembly 29
第三章 實驗架構 31
3-1 實驗儀器 31
3-1-1 雙電子槍蒸鍍系統 31
3-1-2 旋轉塗佈機 32
3-2 量測儀器 33
3-2-1 紫外光/可見光光譜儀 33
3-2-2 橢偏儀 33
3-2-3 原子力顯微鏡 35
第四章 DEDOC高吸收薄膜特性與製備 36
4-1 DEDOC高吸收薄膜layer-by-layer assembly製備 36
4-2 layer-by-layer assembly之DEDOC薄膜光學特性 40
4-3 layer-by-layer assembly之DEDOC薄膜物理特性 43
4-4 layer-by-layer assembly之DEDOC薄膜光電特性影響 45
4-5 DEDOC高吸收薄膜spin coating 製備 48
4-6 Spin coating之DEDOC薄膜光學特性 50
4-7 Spin coating之DEDOC薄膜物理特性 53
4-8 不同DEDOC薄膜製程之薄膜光激螢光影像 55
第五章 微共振腔內光子與激子強耦合現象 57
5-1 Polariton微共振腔設計與製作 57
5-2 Polariton微共振腔變角度反射量測與分析 61
5-3 Polariton微共振腔光致發光量測 66
第六章 結論與未來工作 72
文獻參考 74


[1] R. Eisberg and R. Resnick, Quantum physics: John Wiley New York, 1974.
[2] A. Imamog, R. Ram, S. Pau, and Y. Yamamoto, "Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers," Physical Review A, vol. 53, p. 4250, 1996.
[3] H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, "Polariton lasing vs. photon lasing in a semiconductor microcavity," Proceedings of the National Academy of Sciences, vol. 100, pp. 15318-15323, 2003.
[4] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, et al., "Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities," Physical review letters, vol. 100, p. 047401, 2008.
[5] M. Choi, K.-C. Je, S.-Y. Yim, and S.-H. Park, "Relative strength of the screened Coulomb interaction and phase-space filling on exciton bleaching in multiple quantum well structures," Physical Review B, vol. 70, p. 085309, 2004.
[6] R. Houdré, J. Gibernon, P. Pellandini, R. Stanley, U. Oesterle, C. Weisbuch, et al., "Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons," Physical Review B, vol. 52, p. 7810, 1995.
[7] D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, et al., "Polariton light-emitting diode in a GaAs-based microcavity," Physical Review B, vol. 77, p. 113303, 2008.
[8] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, p. 3314, 1992.
[9] C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, et al., "An electrically pumped polariton laser," Nature, vol. 497, pp. 348-52, May 16 2013.
[10] A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, et al., "Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser," Physical Review Letters, vol. 107, 2011.
[11] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. Keeling, et al., "Bose-Einstein condensation of exciton polaritons," Nature, vol. 443, pp. 409-14, Sep 28 2006.
[12] D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers vol. 172: Springer, 2012.
[13] D. Bajoni, "Polariton lasers. Hybrid light–matter lasers without inversion," Journal of Physics D: Applied Physics, vol. 45, p. 313001, 2012.
[14] S. Forget and S. Chénais, Organic Solid-state Lasers: Springer, 2013.
[15] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, pp. 53-55, 1998.
[16] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, p. 3316, 1999.
[17] C. F. Klingshirn, C. Klingshirn, and C. Klingshirn, Semiconductor optics vol. 3: Springer, 2007.
[18] V. Agranovich, M. Litinskaia, and D. Lidzey, "Cavity polaritons in microcavities containing disordered organic semiconductors," Physical Review B, vol. 67, 2003.
[19] J. Hopfield, "Theory of the contribution of excitons to the complex dielectric constant of crystals," Physical Review, vol. 112, p. 1555, 1958.
[20] D. Lidzey, A. Fox, M. Rahn, M. Skolnick, V. Agranovich, and S. Walker, "Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation," Physical Review B, vol. 65, p. 195312, 2002.
[21] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton Bose-Einstein condensation," Reviews of Modern Physics, vol. 82, pp. 1489-1537, 2010.
[22] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, "Bose-Einstein condensation of microcavity polaritons in a trap," Science, vol. 316, pp. 1007-10, May 18 2007.
[23] V. Savona, L. Andreani, P. Schwendimann, and A. Quattropani, "Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes," Solid State Communications, vol. 93, pp. 733-739, 1995.
[24] 李正中, 薄膜光學與鍍膜技術, 第七版. 新北市: 藝軒圖書出版社, 2012.
[25] V. Lucarini, Kramers-Kronig relations in optical materials research: Springer, 2005.
[26] R. Nitsche and T. Fritz, "Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: Application to organic semiconductors," Physical Review B, vol. 70, p. 195432, 2004.
[27] E. E. Jelley, "Molecular, Nematic and Crystal States of I: I-Diethyl--Cyanine Chloride," Nature, vol. 139, pp. 631-632, 1937.
[28] E. E. Jelley, "Spectral absorption and fluorescence of dyes in the molecular state," Nature, vol. 138, pp. 1009-1010, 1936.
[29] F. Würthner, T. E. Kaiser, and C. R. Saha‐Möller, "J‐Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials," Angewandte Chemie International Edition, vol. 50, pp. 3376-3410, 2011.
[30] G. Scheibe, L. Kandler, and H. Ecker, "Polymerisation und polymere Adsorption als Ursache neuartiger Absorptionsbanden von organischen Farbstoffen," Naturwissenschaften, vol. 25, pp. 75-75, 1937.
[31] V. V. Egorov and M. V. Alfimov, "Theory of the J-band: from the Frenkel exciton to charge transfer," Physics-Uspekhi, vol. 50, pp. 985-1029, 2007.
[32] A. Eisfeld and J. S. Briggs, "The J- and H-bands of organic dye aggregates," Chemical Physics, vol. 324, pp. 376-384, 2006.
[33] R. Iler, "Multilayers of colloidal particles," Journal of Colloid and Interface Science, vol. 21, pp. 569-594, 1966.
[34] X. Zhang, H. Chen, and H. Zhang, "Layer-by-layer assembly: from conventional to unconventional methods," Chemical Communications, pp. 1395-1405, 2007.
[35] H. Fukumoto and Y. Yonezawa, "Layer-by-layer self-assembly of polyelectrolyte and water soluble cyanine dye," Thin Solid Films, vol. 327, pp. 748-751, 1998.
[36] M. S. Bradley, J. R. Tischler, and V. Bulović, "Layer‐by‐Layer J‐Aggregate Thin Films with a Peak Absorption Constant of 106 cm–1," Advanced Materials, vol. 17, pp. 1881-1886, 2005.
[37] S.-H. Chen, C.-H. Wang, Y.-W. Yeh, C.-C. Lee, S.-L. Ku, and C.-C. Huang, "Polarization filters with an autocloned symmetric structure," Applied optics, vol. 50, pp. C368-C372, 2011.
[38] J. Manifacier, J. Gasiot, and J. Fillard, "A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film," Journal of Physics E: Scientific Instruments, vol. 9, p. 1002, 1976.
[39] J. A. Woollam and P. G. Snyder, "Fundamentals and applications of variable angle spectroscopic ellipsometry," Materials Science and Engineering: B, vol. 5, pp. 279-283, 1990.
[40] D. Yokoyama, "Molecular orientation in small-molecule organic light-emitting diodes," Journal of Materials Chemistry, vol. 21, pp. 19187-19202, 2011.
[41] Y. Egawa, R. Hayashida, and J.-i. Anzai, "pH-induced interconversion between J-aggregates and H-aggregates of 5, 10, 15, 20-tetrakis (4-sulfonatophenyl) porphyrin in polyelectrolyte multilayer films," Langmuir, vol. 23, pp. 13146-13150, 2007.
[42] P. K. Raychaudhuri, J. Madathil, J. D. Shore, and S. A. Slyke, "Performance enhancement of top‐and bottom‐emitting organic light‐emitting devices using microcavity structures," Journal of the Society for Information Display, vol. 12, pp. 315-321, 2004.
[43] B. Y. Jung, N. Y. Kim, C. Lee, and C. K. Hwangbo, "Control of resonant wavelength from organic light-emitting materials by use of a Fabry–Perot microcavity structure," Applied optics, vol. 41, pp. 3312-3318, 2002.
[44] H.-S. Wei, C.-C. Jaing, Y.-T. Chen, C.-C. Lin, C.-W. Cheng, C.-H. Chan, et al., "Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities," Optics express, vol. 21, pp. 21365-21373, 2013.
[45] D. Lidzey, T. Virgili, D. Bradley, M. Skolnick, S. Walker, and D. Whittaker, "Observation of strong exciton–photon coupling in semiconductor microcavities containing organic dyes and J-aggregates," Optical Materials, vol. 12, pp. 243-247, 1999.
[46] R. J. Holmes and S. R. Forrest, "Strong exciton–photon coupling in organic materials," Organic Electronics, vol. 8, pp. 77-93, 2007.
[47] T. Virgili, D. Coles, A. Adawi, C. Clark, P. Michetti, S. Rajendran, et al., "Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity," Physical Review B, vol. 83, p. 245309, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top