跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林碩彥
研究生(外文):Sho-Yen, Lin
論文名稱:以探究式學習導入高職化工群學生「專題製作」 核心能力指標建構與驗證之研究
論文名稱(外文):A study of constructing and verifying competence indicators by integrating inquiry-based learning into students' project study in Chemical Engineering Clusters at vocational high schools
指導教授:廖錦文廖錦文引用關係
指導教授(外文):Chin-Wen, Liao
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:410
中文關鍵詞:探究式學習專題製作核心能力指標
外文關鍵詞:inquiry-based learningproject studycore competence factors
相關次數:
  • 被引用被引用:7
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究旨在建構「以探究式學習導入高職化工群學生專題製作核心能力指標」,並據此針對高職化工群學生驗證其能力現況。本研究採用德懷術問卷調查法徵詢德懷術專家意見與建議,進行三回合反覆修正、合併、增減問卷,採用眾數、平均數、標準差、柯-史單一樣本考驗和層級分析法(Analytic hierarchy process, AHP)進行分析,俟專家意見取得一致及其重要程度等級,建構出核心能力指標,並針對102學年度高職化工群學生合計255位實施驗證,進行重要性與表現度(Important-performance analysis, IPA)分析,並結合層級分析法(AHP)所得之專家權重值與學生之重要性與表現度(IPA)結果進行探討分析。
本研究發現,如下所述:
一、本研究之核心能力指標分為「探究研究問題能力」、「主動探究能力」、「專題實作能力」、「撰寫專題研究報告書能力」與「口頭簡報與回應問題能力」等5個構面,共計20個指標內涵以及79個指標細項。
二、專家認為本研究核心能力指標重要程度等級,在第一層指標構面中,「專題實作能力」為專家最重視的評估因素。在第二層指標內涵構面中,「具有確認問題的能力」、「具有主動解決問題的能力」、「小組內善於協調和溝通以解決問題能力」、「具有良好的寫作表達技巧」、「簡報能呈現小組成員間的協調與合作」與「具有良好的簡報技巧與回答問題應變的能力」分別為專家最重視的評估因素。
三、各指標構面中,專家認為權重值最高,而得獎學生認同度高且亦認為本身在專題製作過程當中是可以達成目標的指標,其IPA結果顯示重要性高且滿意度高時,分別為「具有確認問題的能力」、「具有群體合作共同解決問題的精神」、「小組內善於協調和溝通以解決問題能力」、「簡報能呈現小組成員間的協調與合作」等,此為探究式學習導入高職化工群學生專題製作之重要核心能力指標內涵。



The study aims to construct competence indicators by integrating inquiry-based learning into students’ project study in Chemical Engineering Cluster at vocational high schools. Based on the competence indicators constructed, students’ competence is verified. The study adopts Delphi technique to consult opinions and suggestions from Delphi technique experts. After three rounds of repeated revision, combination, adding and deleting of questionnaire items, the ’core competence indicators with the integration of inquire-based learning into students’ project study in Chemical Engineering Cluster at vocational high schools’ are constructed by the analysis of mode, means, standard deviation, Kolmogorov-Smirnov one sample test, and Analytic hierarchy process (AHP) with the consistency of expert opinions as well as level of importance. The competence indicators questionnaire were distributed to 255 chemical students of the 102 academic year, to analyze the Important-performance analysis (IPA), and then to analyze and discuss expert weight with students’ perceptions and IPA.
The core competence indicators are divided into five dimensions: inquiring research questions competence, active inquiring competence, project study demonstration competence, writing project study research report competence and oral presentation and responding to questions competence. In total, there are 20 competence indicator indexs and 79 competence items.
The importance level of core competence indicators identified by experts according to importance is summarized as follows:(1)project demonstration competence is most valued in the first dimension;(2)problem identifying competence, active inquiring competence, team work negotiation and problem-solving competence, good writing expression competence, team-work negotiation and cooperation presented through PowerPoint, excellent oral presentation and responding to questions competence are the most evaluation factors valued by experts.
In each competence indicator dimension, if the level of importance identified by experts is the highest combining with award-winning students’ high perceptions on those competence indicators as well as their capability of being able to achieve them, including problem identifying competence, team work cooperation and problem-solving competence, good negotiation and communication for problem-solving in the teams, team-work negotiation and cooperation presented through PowerPoint, students’ IPA results fall on the first area. Then those competence indicators are suggested as important competence indicators for students of the Chemical Clusters in vocational schools when conducting project study.

目 次
摘 要.........................iii
Abstract...........v
謝 誌............vii
目 次.............ix
表 次.............xiii
圖 次...........xvii
第一章 緒論...................1
第一節 研究背景與動機.........................1
第二節 研究目的............6
第三節 研究問題............6
第四節 研究方法與步驟.........................8
第五節 研究範圍與限制.......................14
第六節 名詞釋義..........17
第二章 文獻探討.........21
第一節 創造力內涵及其相關研究....................21
第二節 創造力解決問題模式及其相關研究.................24
第三節 探究式教學內涵及其相關研究............36
第四節 高職化工群專題製作內涵及其相關研究.........59
第五節 探究式教學導入專題製作能力內涵及其相關研究......88

第三章 研究設計與實施..........91
第一節 研究架構............92
第二節 研究對象............94
第三節 研究工具............98
第四節 研究實施..........105
第五節 資料處理..........109
第四章 資料分析與討論........115
第一節 專家內容審查修正意見彙整................115
第二節 第一次德懷術資料處理分析................127
第三節 第二次德懷術資料處理分析................138
第四節 第三次德懷術資料處理分析................144
第五節 層級分析法問卷調查綜合分析............150
第六節 重要性與表現度問卷調查結果分析.................184
第七節 結合AHP所得之權重值與學生之重要性與表現度所
得之IPA結果分析...................215
第五章 結論與建議..............231
第一節 結論.....231
第二節 建議.....245
參考文獻.....................249


附 錄
附錄一 以探究式學習導入高職化工群學生專題製作能力構面內涵
與細項............275
附錄二 以探究式學習導入高職化工群學生專題製作核心能力指標
之問卷【專家審查問卷】..................281
附錄三 以探究式學習導入高職化工群學生專題製作核心能力指標
之問卷【專家審查問卷】已修訂...................297
附錄四 以探究式學習導入高職化工群學生專題製作核心能力指標
之問卷【德懷術第一回合專家問卷】...........317
附錄五 以探究式學習導入高職化工群學生專題製作核心能力指標
之問卷【德懷術第二回合專家問卷】...........339
附錄六 以探究式學習導入高職化工群學生專題製作核心能力指標
之問卷【德懷術第三回合專家問卷】...........367
附錄七 第一回合德懷術專家問卷結果.......................375
附錄八 高職化工群學生參加「專題製作」能力指標之研究問卷.....387
附錄九 探究式學習導入高職化工群學生專題製作核心能力指標
之問卷【層級分析法專家問卷】...................395


表 次
表2-1 問題解決的四個構面與內涵................27
表2-2「擬定研究架構」構面相關內涵與指標細項................29
表2-3「學習歷程」構面相關內涵與指標細項...........30
表2-4「實作參與」構面相關內涵.................30
表2-5「研究報告書」構面相關內涵...........................31
表2-6「擬定研究架構」構面相關內涵與指標細項(修正1)...............33
表2-7「學習歷程」構面相關內涵與指標細項(修正1)..........34
表2-8「研究報告書」構面相關內涵(修正1).............35
表2-9探究式活動的四個層次.........................43
表2-10探究式活動所需的鷹架種類...............48
表2-11「擬定研究架構」構面相關內涵與指標細項 (修正2)...........54
表2-12「學習歷程」構面相關內涵與指標細項(修正2)........55
表2-13「實作參與」構面相關內涵與指標細項(修正2)........57
表2-14「研究報告書」構面相關內涵與指標細項(修正2).................57
表2-15「口頭簡報」構面相關內涵與指標細項(修正2)........58
表2-16高職專題製作競賽歷年辦理之沿革................61
表2-17高職化工群學生專業能力內涵...................66
表2-18化工科校訂參考科目專題製作實驗科目大要.............71
表2-19「擬定研究架構」構面相關內涵與指標細項(修正3).............81
表2-20「學習歷程」構面相關內涵與指標細項(修正3).........82
表2-21「專題實作參與」構面相關內涵與指標細項(修正3)..............84
表2-22「專題研究報告書」構面相關內涵與指標細項(修正3)..........85
表2-23「口頭簡報」構面相關內涵與指標細項(修正3).........87
表3-1德懷術專家樣本取樣組別分類表.......................95
表3-2德懷術專家名單.............95
表3-3全國職業學校、高中附設職業學校及綜合高中化工群學生
人數一覽表.......97
表3-4德懷術三次專家問卷的實施進度....................106
表4-1「第二層能力指標內涵」修正表.....................117
表4-2「第三層能力指標細項」修正表.....................121
表4-3 專家審查後指標量變動表..................125
表4-4「第一層能力指標構面」修正表.....................128
表4-5「第二層能力指標內涵」修正表.....................130
表4-6「第三層能力指標細項」修正表.....................133
表4-7「第二層能力指標內涵」修正表.....................141
表4-8「第三層能力指標細項」修正表.....................143
表4-9 第一層構面平均標準差......................144
表4-10指標細項之兩次標準差比較..........................145
表4-11第二層主因素與第三層子因素權重值及其排序.......156
表4-12第三層子因素細項權重值及其排序..............178
表4-13探究「研究問題」能力構面之成對樣本t檢定........187
表4-14主動探究能力構面之成對樣本t檢定...........190
表4-15專題實作能力構面之成對樣本t檢定...........193
表4-16撰寫專題研究報告書能力構面之成對樣本t檢定.................196
表4-17口頭簡報與回應問題能力構面之成對樣本t檢定.................199
表4-18探究「研究問題」能力構面之成對樣本t檢定........202
表4-19主動探究能力構面之成對樣本t檢定...........205
表4-20專題實作能力構面之成對樣本t檢定...........208
表4-21撰寫專題研究報告書能力構面之成對樣本t檢定.................211
表4-22口頭簡報與回應問題能力構面之成對樣本t檢定.................214
表4-23探究「研究問題」能力構面之AHP權重值與IPA落點......216
表4-24主動探究能力構面之AHP權重值與IPA落點.........219
表4-25專題實作能力構面之AHP權重值與IPA落點.........222
表4-26撰寫專題研究報告書能力構面之AHP權重值與IPA落點..225
表4-27口頭簡報與回應問題能力構面之AHP權重值與IPA落點..229



圖 次
圖1-1 研究步驟流程圖.............13
圖3-1 指標之層級架構圖.........93
圖3-2 重要性與表現度分析模式圖................103
圖4-1 指標之層級架構...........126
圖4-2 第一次修正後指標層級架構................137
圖4-3 第一層構面之因素權重值畫面.........................150
圖4-4 第二層探究研究問題能力構面之因素權重值畫面......151
圖4-5 第二層主動探究能力構面之因素權重值畫面..............152
圖4-6 第二層專題實作能力構面之因素權重值畫面..............153
圖4-7 第二層撰寫專題研究報告書能力構面之因素權重值畫面.......154
圖4-8 第二層口頭簡報與回應問題能力構面之因素權重值畫面.......155
圖4-9 第三層具有確認問題的能力構面之因素權重值畫面...............158
圖4-10第三層具有準確定義問題的能力構面之因素權重值畫面......159
圖4-11第三層具有主動尋找研究主題能力構面之因素權重值畫面..160
圖4-12第三層能尋找符合自己背景能力的主題構面之因素權重值
畫面................161
圖4-13第三層具有主動解決問題的能力構面之因素權重值畫面.....162
圖4-14第三層能掌控專題進行的流程與進度構面之因素權重值畫
面....................163

圖4-15第三層具有群體合作共同解決問題的精神構面之因素權重
值畫面............164
圖4-16第三層能善用教科書外相關資源構面之因素權重值畫面......165
圖4-17第三層具有自主規劃專題實作的能力構面之因素權重值畫
面....................166
圖4-18第三層指導教師能提供解決問題的方法構面之因素權重值
畫面................167
圖4-19第三層小組內善於協調和溝通以解決問題能力構面之因素
權重值畫面.................168
圖4-20第三層能隨時檢核研究進度與結果探討構面之因素權重值
畫面................169
圖4-21第三層具有分析和統整資料的能力構面之因素權重值畫面..170
圖4-22第三層具有自我檢核研究結果,是否切合主題目標的能力
構面之因素權重值畫面......................171
圖4-23第三層能主動思考如何呈現完善的研究報告書構面之因素
權重值畫面.................172
圖4-24第三層具有良好的寫作表達技巧構面之因素權重值畫面......173
圖4-25第三層能以口頭清晰地表達研究成果構面之因素權重值畫面.....................174
圖4-26第三層能採用簡潔而有條理的簡報呈現方式構面之因素權
重值畫面........175
圖4-27第三層簡報能呈現小組成員間的協調與合作構面之因素權
重值畫面........176
圖4-28第三層具有良好的簡報技巧與回答問題應變的能力構面之
因素權重值畫面.........177
圖4-29探究「研究問題」能力構面IPA圖................187
圖4-30主動探究能力構面IPA圖...................190
圖4-31專題實作能力構面IPA圖...................193
圖4-32撰寫專題研究報告書能力構面IPA圖............196
圖4-33口頭簡報與回應問題能力構面IPA圖............199
圖4-34探究「研究問題」能力構面IPA圖................202
圖4-35主動探究能力構面IPA圖...................205
圖4-36專題實作能力構面IPA圖...................208
圖4-37撰寫專題研究報告書能力構面IPA圖............211
圖4-38口頭簡報與回應問題能力構面IPA圖............214
圖5-1指標之層級架構............237

壹、中文部分
化工科群科中心 (2009)。化工群學生專業能力內涵。台中:化工科群科中心。
于文正 (2014)。鷹架具體程度對創意發想的影響。科學教育研究期刊,59(2), 31-60。
王美芬、熊召弟 (1995)。國民小學自然科教材教法。台北:心理出版社。
王美芬、熊召弟 (2005)。國小階段自然與生活科技教材教法。台北市:心理出版社。
王素芸 (2001)。基本能力指標之發展與概念分析。教育研究資訊,9(1), 1-14。
王貳瑞 (1995)。實務專題製作與報告寫作。台北:華泰。
王翠妃、余忠潔、段曉林 (2012)。探究教學對國中資優學生科學推理類型轉變之影響。特殊教育研究學刊,38(1),79-106。
王靜如 (2001)。小學教師科學本質概念及教學之研究。科學教育學刊,9(2),197-217。
毛連塭、郭有遹、陳龍安、林幸台 (2000)。創造力研究。台北︰心理出版社。
甘漢銧、熊召弟、鍾聖校(1996)。小學自然科課程教學研究。台北: 師大書苑。
吳明雄、許碧珊、饒達欽、簡明忠、陳建宏、張中一、黃秀玉 (2008)。高職學生技術創造力指標建構之研究。師大學報教育類(TSSCI),53(3),67-93。
吳莉蓉 (2008)。引用WebQuest整合圖書資訊利用教育課程對五年級學生專題製作表現之影響。(未出版之碩士論文)。佛光大學教育資訊學系。
沈安如 (2005)。高職商業群「專題製作」課程內涵之規劃研究。(未出版之碩士論文)。國立雲林科技大學技術及職業教育研究所,雲林。
沈健華、李順富、周春美、黃凱平(2002)。創造思考教學策略在技專院校企業管理系實務專題製作課程應用之研究。載於虎尾技術學院舉辦之彰雲嘉地區大專院校2002年研發成果聯合發表會論文集,雲林。
李美儀 (2013)。高職商業群專題製作之實施-學生經驗課程之研究。(未出版之碩士論文)國立臺北科技大學技術及職業教育研究所,台北。
李清吟 (1995)。臺北工專電機科專題製作課程之規劃與實施。技術學刊, 10(3), 299-307..
李暉 (1993)。國中理化教師試行建構主義教學之個案研究。(未出版之碩士論文)。國立彰化師範大學,彰化。
李榮彬 (2008)。台灣小學校本課程的發展與實踐。論文發表於2008年21世紀小學校本課程改革國際學術研討會暨東北師大附小第四屆教育研究發表會,中國:長春。
李賢哲 (2001)。以動手做(DIY)工藝的興趣培養中小學童具科學創造力之人格特質。科學教育月刊,243,1-7。
呂碧浵 (2012)。高級職業學校學生得獎作品指導教師之教學歷程分析研究:以餐飲科專題製作為例。雲林科技大學技術及職業教育研究所碩士論文。全國博碩士論文資訊網。
林建輝 (2008)。高職電資群教師專題製作課程教學問題之研究。(未出版之碩士論文)。高雄師範大學工業科技教育學系,高雄。
紀怡如 (2011)。校園環境議題融入高職設計群專題製作課程之教學行動研究。(未出版之碩士論文)。國立彰化師範大學藝術教育研究所,彰化。
查子秀 (1997)。中德兒童技術創造力跨文化研究。人民論壇,12,42-43。
徐昊杲 (2005)。高職實施「專題製作-問題解決之得勝課程」對學生問題解決態度及學習行為困擾之影響。國家科學委員會專案報告(計畫編號: NSC93-2516-S-003-018)。
洪振方 (1998)。在科學教學的另類選擇:融入科學史教學。屏師科學教育月刊,7,2-10。
洪榮昭、朱永裕、鄭廉鐙 (2002)。科技創作能力發展分析
-以第二屆「POWER TECH:全國少年科技創作競賽」
為例。台灣教育,614,16-23。
郭有遹 (2001)。創造心理學。臺北:正中。
許素 (2002)。專題導向教學在國小六年級自然科實施之行
動研究。(未出版之碩士論文)。台北市立師院科學教育研究所,台北。
張世穎 (2013)。STS教學模式運用於高職電子科專題製作
程之行動研究─以能源教育為例。(未出版之碩士論文)。國立東華大學自然資源與環境學系,花蓮。
張清濱 (2000)。探究教學法。台北:師友月刊社。
張靜儀 (1995)。自然科探究教學法。屏師科學教育,1, 36-45。
陳定邦 (2003)。鷹架教學概念在成人學習歷程上應用之研究。(未出版之博士論文)。國立台灣師範大學社會教育學研究所,台北。
陳姿靜 (2008)。高中職觀光科教師對「專題製作」課程知覺之探討。(未出版之碩士論文)。國立高雄應用科技大學,高雄。
教育部 (2002)。創造力教育白皮書。台北:教育部。
教育部 (2003)。科學教育白皮書。台北:教育部。
教育部技職司 (2006)。高級職業學校「專題製作」科目課
程實施說明書。台北:教育部。
教育部技職司 (2010)。99年職業學校群科課程綱要。台北:教育部。
教育部 (2013)。編制專題製作課程目標。台北:教育部。
黃金益 (1998)。合作學習對大學生專題製作創造力影響之研究。(未出版之碩士論文)。彰化師範大學工業教育學系,彰化。
黃芳立 (2009)。高職美容科「專題製作」課程施以創造思考教學之成效研究。(未出版之碩士論文)。台南科技大學生活應用科學研究所,台南。
黃茂在、陳文典 (2000)。由教學模組看-「自然與生活科技」學習領域之教學。九年一貫課程的教與學,75-84。
黃茂在、陳文典 (2004)。問題解決的能力。科學教育月刊,273,21-41。
湯清二 (1993)。我國學生生物細胞概念發展研究:迷失概念之晤談與概念圖。彰化師範大學學報,4,141-170。
楊建民 (2009)。探究式教學法與講述式教學法在國小Scratch程式教學學習成效之研究。(未出版之碩士論文)。國立屏東教育大學,屏東。
葉安琦 (2000)。促進國小學童創造性問題解決能力的個案研究--發展問題表徵。(未出版之碩士論文)。國立高雄師範大學科學教育所,高雄。
葉麗珠 (2006)。國中生數學學習態度與數學學業成就之相關研究。(未出版之碩士論文)。國立台北大學,台北。
廖錦文 (2013)。發展高職科學探究導入「專題製作」課程及成果評估與推廣之研究。(國科會專案報告,申請條碼編號:102WFA2300169)。
劉丙燈 (2003)。高職機械科「專題製作」課程實施創造思考教學成效之研究。(未出版之碩士論文)。國立彰化師範大學工業教育學系,彰化。
劉宏文(2001)。高中學生進行開放式科學探究活動之個案研究。(未出版之碩士論文)。國立彰化師範大學科學教育研究所,彰化。
劉佩雲、簡馨瑩(譯) (2003)。Jones, B. F., Rasmussen, C., &; Moffitt, M.著。問題解決的教與學。台北: 高等教育。
賴慧玲(譯)。(2002)。Gunter, M. A.&Estes, T. H.著。教學模式。台北:五南。
賴韻如 (2009)。鷹架式探究課程對學生心智模式和科學解釋之影響:以板塊構造學說為例。(未出版之碩士論文)。國立臺灣師範大學地球科學所,台北。
謝莉文 (2006)。鷹架式科學探究課程研發與實踐的個案研究。(未出版之碩士論文)。國立臺灣師範大學地球科學所,台北。
糜萍萍 (2007)。融入情境式教學模式對高職設計群專題製作課程學習成效之研究。(未出版之碩士論文)。雲林科技大學技術及職業教育研究所碩士論文,雲林。
簡禎富 (2005)。決策分析與管理。台北:雙葉書廊。
簡錦鳳 (2008)。文字鷹架對七年級學生科學解釋能力的影響。(未出版之碩士論文)。國立臺灣師範大學科學教育研究所,台北。
鄭明長 (2002)。發問對教學歷程之影響初探。國立台北師範學院學報,15,87-114。
蕭佳純 (2012)。國小學童科學學習動機、父母創意教養與科技創造力關聯之研究。教育科學研究期刊,57(4),103-133
蕭錫錡、趙志揚、許世卿、許錫銘、曾世虹、陳婉如 (2001)。從專題製作課程論大學工程學生創意思考能力之培養。工業教育學刊,21,15-28。
鍾聖校 (1999)。自然與科技課程教材教法。台北:五南。
饒達欽、鄭增財 (1997)。談教師教學品質。技術及職業教育雙月刊,42,7-11。
蘇詠梅 (2003)。走進專題研習中-理論與實踐。香港:教育出版社有限公司。

貳、英文部分
Abd-El-Khalick, F., Bell, R., &; Lederman, N.G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417-436.
Abd-El-Khalick, F., &; Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science:A critical review of the literature. International
Journal of Science Education, 22(7), 665-701.
Abd-El-Khalick, F., BouJaoude, S., Duschl, R. A., Hofstein, A., Lederman, N. G., Mamlok, R., Niaz, M., Treagust, D., &; Tuan, H. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419.
Alberta Learning. (2004). Focus on inquiry. Edmonton, AB: Alberta Learning. Retrieved December 25, 2013, from http://www.education.gov.ab.ca/k_12/curriculum/bySubject/focusoninquiry.pdf
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry? Journal of Science Teacher Education, 13(1), 1-12.
Barak, M., &; Goffer, N. (2002). Fostering systematic innovative thinking and problem solving: Lessons education can learn from industry. International Journal of Technology and Design Education, 12(3), 227–247.
Barak, M., &; Dori, Y. J. (2005). Enhancing undergraduate students’ chemistry understanding through project-based learning in an IT environment. Science Education, 89(1), 117–39.
Bell, R., Maeng, J. L., Peters, E. E., &; Sterling, D. R. (2010). Scientific inquiry and the nature of science task force report. Richmond, VA: Wiley.
Bell, R., Smetana, L., &; Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7),
30–34.
Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In J. M. Spector, M. D. Merrill, J. Elen, &; M. J. Bishop (Eds.), Handbook of research on educational communications and technology. New York, NY: Springer.
Belland, B. R., Kim, C.M., &; Hannafin, M.J. (2013). A framework for designing scaffolds that improve motivation and cognition. Educational Psychologist, 48(2), 243-270.
Biggs, J. B. (1987). The process of learning. New York: Prentice Hall.
Borasi, R. (1992). Learning mathematics through inquiry. Portsmouth, NH: Heinemann.
Bransford, J., &; Barry, S. (1984). The ideal problem solver: a guide for improving thinking, learning, and creativity. New York: W.H. Freeman.
Brown, A. L., &; Campione, J. C. (1994). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating congnitive theory and classroom practice (pp.229-270) Cambridge, MA: MIT Press/Bradford Books..
Bruner, J., Wood, D., &; Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.
Bybee, R. W. (2000). Teaching science as inquiry. Washington, DC: American Association for the Advancement of Science.
Bybee, R. W. (2004). Science inquiry and science teaching. The Netherlands: Kluwer.
Campbell, T., Abd-Hamid, N. H &; Chapman, H. (2010). Development of instruments to assess teacher and student perceptions of inquiry experiences in science classrooms. Journal of Science Teacher Education, 21, 13-31.
Chang, I. F. (1998). Teaching technological creativity-why and how. Paper presented at International Conference on Technological Creativity Development, Taipei, Taiwan.
Crawford, B. A. (2000). Embracing the essence of inquiry:
New roles of science teacher. Journal of Research in
Science Teaching, 37(9), 916-937.
Csikszentmihalyi, M. (1996). Social, culture, and person: A system view of creativity. In R. J. Sternberg (Ed.), The Nature of Creativity(pp. 325-39). NY: Cambridge University Press.
Dai, D. Y., Gerbino, K. A., &; Daley, M. J. (2011). Inquiry-based learning in China: Do teachers practice what they preach, and why? Frontiers of Education in China, 6(1), 139–157.
Davis, G. A. (1986). Creativity is forever (2nd edition.). Dubuque, Iowa: Kendall/Hunt.
Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. The Journal of the Learning Sciences, 12, 91-142.
Davis, E. A., &; Miyake, N. (2004). Explorations of scaffolding in complex classroom systems. Journal of the Learning Sciences, 13(3), 265–272.
Dasgupta, S. (1996). Technology and creativity. New York: Oxford University Press.
Dass, M. P. (2000). Preparing coaches for the changing gameof science: Teaching in multiple domains. The
Clearing House, 74, 39-41.
Dudu, W. T., &; Vhurumuku, E. (2012). Teachers’ practices of inquiry when teaching investigations: a case study. Journal of Science Teacher Education, 23(6), 579-600.
Dewey, J. (1910). How we think. Boston, MA: Heath.
Dewey, J. (1913). Interest and Effort in Education. Cambridge, Massachusetts: The Riverside Press.
Drayton, B. &; Falk, J. K. (2001). Tell-tale signs of the inquiry oriented classroom. NASSP Bulletin, 85, 24-34.
Edelson, D. C., Gordin, D. N., &; Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8, 391-450.
Edelson, D. C. (2001). Learning-for-use: A Framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 30(3), 355-385.
Elliott, E. J. (1991). Education counts: An indicator system to monitor the nation's educational health. Washington, D. C.: Acting Commissioner of Education Statistics.
Esquivel, G. B. (1995). Teacher behaviors that foster creativity, Educational Psychology Review, 7(2), 185-202.
Feldhusen, J. F., &; Treffinger, D. J. (1980). Creative thinking and problem solving in gifted education. Tx: Kendall/Hunt.
Fried-Booth, D. L. (1987). Project work. Oxford: Oxford University Press.
Gagne, E. D., &; Yakovich, F. R. (1993). The cognitive psychology of school Learning. New York: Harper Collins College Publishers.
Gardner, H. (1983). Frames of mind: The theory of multiple intelligence. New York: Basic books.
Gibson, H. L., &; Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693-705.
Grant, M. M., &; Branch, R. M. (2005). Project-based learning in a middle school: Tracing abilities through the artifacts of learning. Journal of Research on Technology in Education, 38(1), 65-98.
Gubacs, K. (2004). Project-based learning: A student-centered approach to integrating technology into physical education teacher education. Journal of Physical Education, Recreation &; Dance, 75(7), 33-43.
Haug, B. S. (2014). Inquiry-based Science: Turning Teachable Moments into Learnable Moments. Journal of Science Teacher Education, 25(1), 79-96.
Heppner, P. P., &; Krauskopf, C. J., (1987). An information processing approach to personal problem solving. Counseling Psychologist, 15(3), 371-447.
Hill, C. W. L., &; Rothaermel, F. T. (2003). The performance of incumbent firms in the face of radical technological innovation. Academy of Management Review, 28(2), 257-74.
Hmelo, C. E., &; Williams. S. M. (1998). Learning through problem solving. Special Issue. The Journal of Learning Science, 7(3&;4).
Howe, R. (1997). Creative problem solving approaches processes for teaching and doing creative activity. Paper presented at the seminar of Instruction for Creative Thinking. Taipei: NTNU.
Hsu, Y. L., Lee, C. H., &; Kreng, V. B. (2010). The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology selection. Experts Systems with Applications, 37(1), 419-425.
Ishizaka, A., &; Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 336-345.
Jackson, S., Krajcik, J., &; Soloway, E. (2000). Model-It: A design retrospective. In M. Jacobson and R.
Kozma (Eds.), Innovations in science and mathematics education: Advanced designs for the
technologies of learning. New York: Lawrence Erlbaum
Associates.
Keys, C. W., &; Bryan, L. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38, 631–646.
Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.
Kim, M., &; Tan, A. L. (2011). Rethinking difficulties of teaching inquiry-based practical work: stories from elementary pre-service teachers. International Journal of Science Education, 33(4), 465-486.
Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., &; Fredricks, J. (1998). Inquiry in Project-Based Science Classrooms: Initial Attempts by Middle School Students. The Journal of the Learning Sciences, 7(3&;4), 313-350.
Krajcik, J. S., Blumenfeld, P., Marx, R. W., &; Soloway, E. (2000). Instructional, curricular, and technological supports for inquiry in science classrooms. In Minstrell, J. &; Zee, E.H.V. (Eds.), Inquiring into inquiry learning and teaching in science (pp. 283–315). Washington, DC: American Association for the 117 Advancement of Science.
Krajcik, J. S., Czerniak, C., &; Berger, C. (2003). Teaching children science in elementary and middle school classrooms: A project-based approach. New York: McGraw-Hill.
Lederman, N. G. (1999). Teachers’ understanding of nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36(8), 916-929.
Li, Y., Zhao, Y., &; Liu, Y. (2006). The relationship between HRM, technology innovation and performance in China. International Journal of Manpower, 27(7), 679-697.
Lindfors, J. W. (1999). Children's inquiry: using language to make sense of the world. New York: Teachers College Press.
Lott, D. (1983). Analyzing and counteracting interference errors, TESL Journal, 37(3). Retrieved from http://iteslj.org/Articles/Lott-Interference.html
Loving, C. C. (1997). From the summit of truth to its slippery slopes: Science education’s journey through positivist-postmodern territory. American Educational Research Journal, 34(3), 421-452.
Lunetta, V. N. (1998). The school science laboratory: Historical perspectives and contexts for contemporary teaching. In Tobin, D. &; Fraser, B.J. (Eds.), International handbook of science education (pp.249-264). The Netherlands: Kluwer.
Martilla, J. A., &; James, J. C. (1977). Importance performance analysis. Journal of Marketing, 41(1), 77–79.
Martin-Hansen, L. (2002). Defining inquiry: Exploring the many types of inquiry in the science classroom. The Science Teacher, 69(2),34-37
Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: W. H. Freeman and Company.
Mayston, D.J., &; Jesson, D. J. (1991). Educational performance assessment: A new framework of analysis. Policy and Politics, 19, 99-108.
Mckeachie, W. J. (1987). Teaching and learning in the college classroom: A review of the research literature. New Jersey: Prentice-Hall Ino.
Mellou, E. (1996). The two-conditions view of creativity. Journal of Creative Behavior, 30(2), 126-149.
Minner, D., Levy, A. J., &; Century, J. (2010). Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002.
Journal of Research in Science Teaching, 47(4), 474-496.
National Research Council. (1996). National Science Education Standards. Washington DC: National Academy Press.
National Research Council. (2000). Inquiry and National science education standards .Washington DC: National Academy Press.
National Research Council. (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
Niu, W. (2007). Individual and environmental influences on Chinese student creativity. Journal of Creative Behavior, 41(3), 151-175.
O’ Sullivan, D. (1991). DSM high-performance fiber attracts growing interest. Chemical &; Engineering News, 69, 20-23.
Pandilla, M. J., &; Padilla, R. K. (1986). Thinking in Science-The science process skills. (ERIC document Reproduction Service. No, ED277549).
Parnes, S. J. (1967). Creative behavior guidebook. New York: Scribner.
Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J. S., Fretz, E., Duncan, R. G., et al. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337–386.
Ramnarain, U. D. (2014). Teachers’ perceptions of inquiry-based learning in urban, suburban, township and rural high schools: The context-specificity of science curriculum implementation in South Africa. Teaching and Teacher Education, 38, 65-75.
Randy, L., Bell, L. S., &; Ian, B. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30-33.
Rezba, R. J., Auldridge, T., and Rhea, L. (1999). Teaching and learning the basic science skills. Retrieved from www.pen.k12.va.us/vdoe/instruction/TLBSSGuide.doc.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive
development in social context. New York: Oxford
University Press
Rogoff, B. (1994). Developing understanding of the idea of communities of learners. Mind, Culture, and Activity, 4, 209-229.
Roth, W. M., &; Roychoudhury, A. (1993). The development of science process skills in authentic contexts. Journal of Research in Science Teaching, 30(2), 127–152.
Roth, W. M. (1995). Authentic social science. Netherlands: Kluwer Publishers.
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9-26.
Sampson, S. E., &; Showalter, M. J. (1999). The performance-importance response function: Observations and implications. The Service Industries Journal, 19, 1-25.
Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102-119.
Schwab, J. J. (1962). The teaching of science as inquiry. In Schwab, J. J. &; Brandwein, P. F. (Eds.), The teaching of science(pp.3-103). Cambridge, MA: Harvard University Press.
Shallcross, Doris J. (1981). Teaching creative behavior: How to teach creativity to children of all ages. New Jersey: Prentice-Hall.
Shulman, C. (1986). Those who understand: Knowledge growth in teaching, Educational Research, 15(1), 4-14.
Smith, P. L., &; Ragan, T. J., (1999). Instructional Design.(2nd edition), Norman, OK: The University of Oklahoma.
Songer, N. B., Lee, H., &; McDonald, S. (2003). Research towards an expanded understanding of inquiry science beyond one idealized standard. Science Education, 87(4), 490–516.
Sternberg, R. J., &; Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. In Sternberg, R. J. (Ed.), Handbook of Creativity (pp. 3-15). New York: Cambridge University Press.
Suchman, J. R. (1968). Learning through inquiry. In Allen, R. F. (Ed.) Inquiry in the social studies, NCSS.
Sylwester. R. (1995). A celebration of neurons. Alexandria, VA: Association for Supervision and Curriculum Development.
Thang, S. M. (2004). Student approaches to studying:Identify the Malaysian constructs and comparing them with those in other contexts. Journal of Further and Higher Education, 28(4), 395-371.
Torrance, E. P. (1962). Guiding creative talent. Englewood Cliffs, NJ: Prentice-Hall.
Torrance, E. P. (1966). Torrance tests of creative thinking: Norms-technical manual. Princeton, NJ: Personnel Press.
Torrance, E. P., &; Goff, K. (1990). Fostering academic creativity in gifted students. ERIC Flyer File on Gifted Students (No. E484).
Vygotsky, L. S. (1978). Mind in Society. Cambridge, MA: Harvard University Press.
White, B. Y., &; Frederiksen, J. R. (1998). Inquiry,
modeling, and metacognition: Making science
accessible to all students. Cognition and Instruction,
16, 3-118.
Willems, P., &; Gonzalez-DeHass, A. R. (2012). School-community partnerships: Using authentic contexts to academically motivate students. School Community Journal, 22(2), 9–30.
Wong, S. L., &; Hodson, D. (2008). From the horse’s mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93, 1–22.
Wood, D. J., Bruner, J. S., &; Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.
Wood, T., Cobb, P., &; Yackel, E. (1992). Change in learning mathematics: Change in teaching mathematics. In H. Marshall (Ed.), Redefining student learning. New Jersey: Ablex.
Zimmerman, E. (2006). It takes effort and time to achieve new ways of thinking: Creativity and art education. The International Journal of Arts Education, 3(2), 74-87.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top