(3.215.183.251) 您好!臺灣時間:2021/04/23 14:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李佩樺
研究生(外文):LEE, Pei-Hwa
論文名稱:質子鈦酸鹽奈米管的酸性研究
論文名稱(外文):Protonated Titanate Nanotubes as Solid Acid Catalyst
指導教授:林秋薰林秋薰引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:91
中文關鍵詞:鈦酸鹽奈米管固體酸
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
利用水熱合成法將二氧化鈦銳鈦礦粉末在10M NaOH(aq) 383K下反應4天,合成出具有層狀結構的鈦酸鈉奈米管(Na2Ti3O7,NaTNTs)。利用離子交換法先將Na+交換含有不同陽離子之MTNTs(M=Fe、La、Al、Ce和H)讓原本不具酸性奈米管產生酸性,之後再利用鍛燒不同的溫度(383K、473 K、573 K、673 K)控制B酸與L酸的大小。HTNTs於酸催化形成縮酮之反應的催化活性最佳,但其熱穩定性越不好,當鍛燒溫度為673K時HTNTs表面積驟降,從BET粒徑分布圖得知,HTNTs中空孔洞已封閉,反應物分子無法與奈米管內層的B酸活性中心反應,因此幾乎沒有催化活性。故吾人選擇383K乾燥後的HTNTs做為固體酸觸媒,研究其酸點之電子和立體障礙的性質。
從IR吸附吡啶光譜中發現我們製備的鈦酸鹽奈米管MTNTs(Fe、La、Al、Ce、H)同時擁有B酸與L酸的酸點,而且利用吸附吡啶進行層溫脫附實驗,藉由DRIFTS觀察光譜的變化,可以發現HTNTs具有強勁的B酸強度,而縮酮產率正比於B酸的DRIFTS的峰面積,証實B酸是此反應的活性中心。HTNTs在不同反應條件下進行了環己酮和乙二醇的環狀縮酮反應,證實此反應為放熱反應。也得知從合成不同環大小(五、六、七、八),五環縮酮之產率最佳,環的大小所引起對酸性中心的立障效應比環張力來的更為重要。縮醛(酮)的反應機制,涉及作為反應中間體的正碳離子,可以預期雙醇分子的結構,會影響電子密度進而影響催化活性,結果顯示使用甲、乙、丙取代基乙二醇去合成環狀縮酮,其平衡產率比沒有取代基乙二醇還要好,証實了有電子效應。但初始反應速率則是以剛好相反,以沒有取代基之乙二醇為最佳,暗示尚有因為分子大小所引起之立體障礙效應。之後製備了相同含有莫耳數鹼金族陽離子,顆粒較大的陽離子,會縮小洞口,較大反應物分子無法與管內活性中心反應,導致催化活性下降,此証實了此反應亦受限於奈米管洞口大小之立障效應。此外,HTNTs催化劑可重複此催化反應五次,催化活性沒有明顯的損失,給予一個滿意可重性。

Multi-walled sodium titanate nanotubes (Na2Ti3O7, abbreviated as NaTNTs) were synthesized via a hydrothermal method by using anatase TiO2 powder in 10M NaOH aqueous solution at 383K for 4 days. Acidic MTNTs (M:Fe、La、Al、Ce and H) were then prepared via ion exchange method by using NaTNTs and aqueous metal nitrate solutions to remove Na+, followed by calcination between 383—673K. In the acid-catalyzed ketal formation reaction by using cyclohexanone and ethylene glycol, HTNTs dried at 383 K displayed the best catalytic activity among all the MTNTs solid acid catalysts. BET results indicated that calcinations of HTNTs at higher temperature led to severe dehydroxylation of nanotubes and collapsing of its tubular pore, resulting in loss of the surface area. XRD further showed that the HNTs had transformed from titanate phase to anatase phase at 673K. Due to such variations in the nanotube structure, HTNTs calcined at >573K would lost almost all of their catalytic activity. Thus, HTNTs dried at 383K was chosen for further investigating the electronic and steric properties of the acid sites in this type of solid acid.
DRIFTS spectra for pyridine adsorption showed that HTNTs possess both Brønsted and Lewis acid sites. Thermal desorption of adsorbed pyridine with DRIFTS indicated that pyridine adsorbed on HTNs would not desorb at 573K and suggested that these HTNTs had strong acid sites. Furthermore, the ketal yield varied linearly with the peak area of the Brønsted acid site in DRIFTS spectra, suggesting that these acid sites catalyzed the ketal formation. The ketal yield was lower at a higher temperature and thus, confirmed that the formation of cyclic ketal over HTNTs was exothermic. For the formation of cyclic ketal with different ring size, the fact that the yield for the smaller five-number ring ketal was the highest implied a steric effect of the acid site was imposed on the reaction, where the effect of the ring size on the product yield was obviously more important than the ring strain. Since ketal formation involved a carbocation intermediate, it was expected that reactant molecules that were capable of donating the electron density to the carbocation and stabilizing it, should produce a higher product yield. The results showed that the equilibrium product yields obtained by using electron-releasing alkyl group substituted ethylene glycol were indeed higher than that obtained by using ethylene glycol, confirming the electronic effect of the reaction. However, the initial rate of the non-substitute ethylene glycol was higher than that of the substitute ethylene glycol suggested a steric effect on the reaction imposed by the molecular size of the reactant. Reactions carried out by using 1,2-pentanediol over HMTNTs (M=Li, Na, K) that contain the same number of alkali metal ions in the nanotubes yield an initial reaction rate in the following order: HLiTNTs > HNaTNTs > HKTNTs. The order of the reaction rate confirmed the steric effect of the size of tubular pore entrance imposed on the reaction: the large K+ sits on the entrance of the tubular pore, making 1,2-pentanediol more difficult to enter inside the pore to react with the acid site inside the pore and thus, lowering the reaction rate. The catalyst can be reused five times without significant loss of catalytic activity, suggesting a satisfactory reusability.

本文目錄
謝誌……………………………………………………………………ii
中文摘要………………………………………………………………iii
英文摘要………………………………………………………………IV
本文目錄………………………………………………………………vi
圖目錄…………………………………………………………………ix
表目錄…………………………………………………………………xii
第一章 緒論……………………………………………………………………1
第一節 研究動機與目的………………………………………………………1
第二節 二氧化鈦與鈦酸鹽奈米管……………………………………………4
第三節 固體酸催化劑…………………………………………………………14
1-3-1 簡易酸的概念…………………………………………………………14
1-3-2 固體酸強度、類型、酸度……………………………………………16
1-3-3 固體酸催化劑…………………………………………………………22
第四節 酮羰基的保護反應……………………………………………………25
1-4-1 羰基與乙二醇脫水環化反應的反應機構……………………………25
第二章 實驗方法………………………………………………………………28
第一節 鈦酸鹽奈米管的製備…………………………………………………28
2-1-1 鈦酸鈉奈米管…………………………………………………………28
2-1-2 離子交換M3+鈦酸鹽奈米管…………………………………………28
2-1-3 質子鈦酸鹽奈米管……………………………………………………29
第二節 鈦酸鹽奈米管物性與化性的鑑定……………………………………32
2-2-1 鈦酸鹽奈米管微結構分析……………………………………………32
2-2-2 鈦酸鹽奈米管晶相及表面積…………………………………………32
2-2-3 鈦酸鹽奈米管元素分析………………………………………………33
2-2-4 鈦酸鹽奈米管的酸點及強度判定……………………………………33
第三節 固體酸催化反應實驗…………………………………………………36
2-3-1 羰基與乙二醇脫水環化反應的酸催化應……………………………36
2-3-2 GC分析…………………………………………………………………36
2-3-3 觸媒可重用性的測試…………………………………………………37
第三章 結果與討論………………………………………………………………39
第一節 鈦酸鹽奈米管的鑑定…………………………………………………39
3-1-1 觸媒形狀與結構分析…………………………………………………39
3-1-2 鈦酸鹽奈米管晶相分析………………………………………………40
3-1-3 鈦酸鹽奈米管酸點性質的鑑定………………………………………41
第二節 鈦酸鹽奈米管酸性研究………………………………………………59
3-2-1 鈦酸鹽奈米管反應活性的比較………………………………………59
第三節 質子鈦酸鹽奈米管……………………………………………………61
3-3-1 結構分析…………………………………………………………………61
3-3-2 質子鈦酸鹽奈米管酸點性質與強度鑑定………………………………61
第四節 質子鈦酸鹽奈米管酸性研究…………………………………………73
3-4-1 反應溫度…………………………………………………………………73
3-4-2 交換不同含量的鈉金屬…………………………………………………73
3-4-3 立體效應與推拉電子效應的探討………………………………………74
3-4-4 觸媒可重用性……………………………………………………………75
第四章 結論………………………………………………………………………84
第五章 參考文獻…………………………………………………………………86

圖目錄
第一章
圖1-2-1 (a)、(b)為TiO6結構單元的連接;金紅石(c)、銳鈦礦(d)、板鈦礦(e)的TiO6八面體結構…………………………………………………………6
圖1-2-2 80TiO2‧20SiO2粉末(in mol%)m於10M NaOH(aq)在110(383K)下反應20hTEM圖…………………………………………………………………7
圖1-2-3 二氧化鈦奈米管形成機制……………………………………………8
圖1-2-4 二氧化鈦奈米管的捲曲機制(a)蝸牛形,(b)洋蔥形,(c)圓形…9
圖1-2-5 二氧化鈦奈米管形成的全反應機制………………………………10
圖1-2-6 二氧化鈦奈米材料各種不同的結構與化學變化…………………11
圖1-2-7 (a)HRTEM圖;(b)局部放大的TiO6 octahedra(○)和Cs+(□)原子位置圖;(c)原子排列模型圖Cs0.7Ti1.825□0.175O4………………12
圖1-2-8 奈米管及奈米纖維在離子交換時的可能途徑……………………13
圖1-3-2-1 液體酸及固體酸H0值大小比較…………………………………19
圖1-3-2-2 固體酸強度的檢測(DRIFTS)……………………………………20
圖1-3-3-1 固體酸示意圖……………………………………………………24
圖1-4-1 SMO催化劑藉由水分子將L酸轉變為B酸點…………………………26
圖1-4-2 羰基的共振結構圖……………………………………………………26
圖1-4-3 羰基的反應圖…………………………………………………………26
圖1-4-4 環化脫水反應機構圖…………………………………………………27
第二章
圖 2-1-1 實驗裝置圖…………………………………………………………30
圖2-1-2 實驗流程圖…………………………………………………………31
圖2-2-4-1(A)實驗裝置圖;(B) 反射裝置(High Vacuum ChamberHVC35
圖2-3-1 真空系統與催化實驗裝置圖…………………………………………38
第三章
圖3-1-1 二氧化鈦銳鈦礦粉末與10M NaOH在110℃(383K)中反應4天後的SEM………………………………………………………………………………43
圖3-1-2 鈦酸鈉奈米管經過NH4+交換後的SEM圖(383K)…………………44
圖3-1-3 質子鈦酸鹽奈米管(HTNTs) 383K的SEM圖………………………45
圖3-1-4 鈦酸鹽奈米管經過383K乾燥後的BET孔徑分佈圖………………46
圖3-1-5 鈦酸鹽奈米管經過473K鍛燒後的BET孔徑分佈圖………………47
圖3-1-6 鈦酸鹽奈米管經過573K鍛燒後的BET孔徑分佈圖………………48
圖3-1-7 鈦酸鹽奈米管經過673K鍛燒後的BET孔徑分佈圖………………49
圖3-1-8 HTNTs不同鍛燒溫度的BET孔徑分佈圖……………………………50
圖3-1-9 鈦酸鹽奈米管經過383K乾燥後的XRD晶相圖………………………51
圖3-1-10 鈦酸鹽奈米管經過473K鍛燒後的XRD晶相圖……………………52
圖3-1-11 鈦酸鹽奈米管經過573K鍛燒後的XRD晶相圖……………………53
圖3-1-12 鈦酸鹽奈米管經過673K鍛燒後的XRD晶相圖……………………54
圖3-1-13 FeTNTs經過不同鍛燒溫度的XRD晶相圖…………………………55
圖3-1-14 HTNTs經過不同鍛燒溫度的XRD晶相圖……………………………56
圖3-1-15 鈦酸鹽奈米管473K吸附吡啶的FT-IR光譜………………………57
圖3-2-1 (a)與(b)為MTNTs(Fe、La、Al、Ce、H)前處理在不同鍛燒溫度下,反應活性比較圖……………………………………………………………60
圖3-3-1不同wt% NaHTNTs的BET孔徑分佈圖………………………………64
圖3-3-2 同mole% MHTNTs(M=Li、Na、K)的BET孔徑分佈圖……………65
圖3-3-3不同wt% NaHTNTs的XRD晶相圖……………………………………66
圖3-3-4 同mole% HMTNTs(M=Li、Na、K)的XRD晶相圖…………………67
圖3-3-5 383K乾燥過的HTNTs之TEM圖………………………………………68
圖3-3-6不同wt%的NaHTNTs吸附吡啶的DRIFTS光譜………………………69
圖3-3-7 HTNTs在不同溫度脫附吡啶的DRIFTS光譜…………………………71
圖3-4-1 HTNTs在不同反應溫度的結果………………………………………76
圖3-4-2 (a)不同含Na+量的質子鈦酸鹽奈米管催化活性比較圖;(b)催化活性與酸點比較圖.………………………………………………………………77
圖3-4-3為合成不同環大小催化活性的比較圖………………………………79
圖3-4-4 (a)合成不同取代基的五環縮醛探討電子效應的反應結果;(b)局部放大圖……………………………………………………………………………80
圖3-4-5 (a)同mole% HMTNTs(M=Li、Na、K)探討立體阻礙效應的反應結果;(b) 局部放大圖……………………………………………………………81
圖3-4-6縮酮反應的結論示意圖………………………………………………82
圖3-4-7 HTNTs催化劑可重用性測試圖………………………………………83

表目錄
表1-1-1 工業上常用的催化劑…………………………………………………3
表1-3-1-1 一般固體酸分類……………………………………………………15
表1-3-2-1 IR光譜圖上常見吡啶吸附固體酸酸點的吸附峰位置(cm-1)與種類…………………………………………………………………………………20
表3-1-1 鈦酸鹽奈米管之表面積、孔洞體積之比較………………………42
表3-1-2鈦酸鹽奈米管吸附吡啶的DRIFTS光譜之吸附峰面積………………58
表3-3-1 鈦酸鹽奈米管之表面積、孔洞體積之比較………………………63
表3-3-2不同wt%的NaHTNTs吸附吡啶的DRIFTS光譜之吸附峰面積………70
表3-3-3 HTNTs在不同溫度脫附吡啶的DRIFTS光譜之吸附峰面積…………72
表3-4-1 使用不同碳數的雙醇類合成環狀縮醛的結果………………………78

參考文獻

[1]閔恩澤、吳巍(民96)。綠色化學與化工(Green Chemistry and Engineering)。台北市:五南圖書出版股份有限公司。
[2]Akio Mitsutani, Catalysis Today, 2002, 73, 57­-63.
[3]Guido Busca, Chem. Rev., 2007, 107, 5366­-5410.
[4]G.D. Yadav, A.A. Pujari, The Canadian Journal of Chemical Engineering, 1999, 7, 489-­496.
[5]林宗伯。含硫酸根固體超強酸觸媒催化之環狀縮醛及縮酮的合成反應。國立彰化師範大學化學系碩士論文。2000年。
[6]Chiu-Hsun Lin, Shawn D. Lin, Tsung-Po Lin, Ya-Jean Huang, Applied Catalysis A:General, 2003, 240, 253-­262.
[7]Sumio lijima, Nature, 1991, 354, 56-­58.
[8]Hidenori Nakamura, Yasushi Matsui, J. Am. Chem. Soc., 1995, 117, 2651­-2652.
[9]Xiao-Dan Zhao, Hai-Ming Fan, Jun Luo, Jun Ding, Xiang-Yang Liu, Bing-Suo Zou, Yuan-Ping Feng, Adv. Funct. Mater., 2011, 21, 184-­190.
[10]Brinda B. Lakshmi, Charles J. Patrissi, Charles R. Martin, Chem. Mater., 1997, 11, 2544­-2550.
[11]Zheng Chang, Jing Liu, Junfeng Liu, Xiaoming Sun, J. Mater. Chem., 2011, 21, 277-­282.
[12]Xiaobo Chen, Samuel S. Mao, Chem. Rev., 2007, 107, 2891­2959.
[13]A. Robert Armstrong, Graham Armstrong, Jesus Canales, Peter G. Bruce, Journal of Power Sources, 2005, 146, 501-­506.
[14]Yoshinori Ohsaki, Naruhiko Masaki, Takayuki Kitamura, Yuji Wada, Takumi Okamoto, Toru Sekino, Kohichi Niihara, Shozo Yanagida, Phys. Chem. Chem. Phys., 2005, 7, 4157-­4163.
[15]Po-Tsung Hsiao, Kai-Ping Wang, Chih-Wei Cheng, Hsisheng Teng, J. Photochem. Photobiol. A: chem, 2007, 188, 19-­24.
[16]高濂、張青紅、鄭珊。奈米光觸媒(2004)。五南圖書出版股份有限公司。
[17]Dont.Cromer, K. Herrington, J. Am. Chem. Soc., 1954, 6, 4708-­4709.
[18]Tomoko Kasuga, Masayoshi Hiramatsu, Akihiko Hoson, Toru Sekino, Koichi Niihara, Adv. Mater., 1999, 11, 1307-­1311.
[19]M. Kim, S.-H. Hwang, S. K. Lim, S. Kim, Cryst. Res. Technol., 2012, 47, 1190-­1194.
[20]S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang, H. C. Zeng, Chem. Mater., 2002, 14, 1391-­1397.
[21]Patrick Hoyer, Langmuir, 1996, 12, 1411-­1413.
[22]Hiroaki Imai, Yuko Takei, Kazuhiko Shimizu, Manabu Matsuda, Hiroshi Hirashima, J. Mater. Chem., 1999, 9, 2971­2972.
[23]Hiroaki Imai, Manabu Matsuta, Kazuhiko Shimizu, Hiroshi Hirashima, Nobuaki Negishi, J. Mater. Chem., 2000, 10, 2005­2006.
[24]Chuanmin Ruan, Maggie Paulose, Oomman K. Varghese, Craig A.Grimes, Solar Energy Mater. Solar Cells, 2006, 90, 1283­-1295.
[25]Satoshi Kobayashi, Kenji Hanabusa, Nobuhiro Hamasaki, Mutsumi Kimura, Hirofusa Shirai, Chem. Mater., 2000, 12, 1523­-1525.
[26]Tomoko Kasuga, Masayoshi Hiramatsu, Akihiko Hoson, Toru Sekino, Koichi Niihara, Langmuir, 1998, 14, 3160-­3163.
[27]Y.Q. Wang, G.Q. Hu, X.F. Duan, H.L. Sun, Q.K. Xue, Chem. Phys. Lett., 2002, 365, 427­-431.
[28]Dmitry V. Bavykin, Valentin N. Parmon, Alexei A. Lapkina, Frank C. Walsh, J. Mater. Chem., 2004, 14, 3370­3377.
[29]Dmitry V. Bavykin, Jens M. Friedrich, Frank C. Walsh, Adv. Mater., 2006, 18, 2807­-2824.
[30]Dmitry V. Bavykin, Frank C. Walsh, Eur. J. Inorg. Chem., 2009, 977­-997.
[31]Renzhi Ma, Takayoshi Sasakia, Yoshio Bando, Chem. Commun., 2005, 948-­950.
[32]Xiaoming Sun, Yadong Li, Chem. Eur. J., 2003, 9, 2229­2238.
[33]Dmitry V. Bavykin, Frank C. Walsh, J. Phsy. Chem. C, 2007, 111, 14644­-14651.
[34]Bejoy Thomas, Bibhuti B. Das, S. Sugunan, Microporous and Mesoporous Materials, 2006, 95, 329­-338.
[35]Bejoy Thomas, S. Sugunan, Microporous and Mesoporous Materials, 2006, 96, 55­-64.
[36]Qing Shu, Bolun Yang, Hong Yuan, Song Qing, Gangli Zhu, Catalysis Communications, 2007, 8, 2159­-2165.
[37]Bejoy Thomas, Vasanthakumar Ganga Ramu, Sanjay Gopinath, Jino George, Manju Kurian, Guillaume Laurent, Glenna L. Drisko, Sankaran Sugunan, Applied Clay Science, 2011, 53, 227­-235.
[38]Masaaki Kitano, Kiyotaka Nakajima, Junko N. Kondo, Shigenobu Hayashi, Michikazu Hara, J. Am. Chem. Soc., 2010, 132, 6622­-6623.
[39]Guido Busca, Chem. Rev., 2007, 107, 5366­-5410.
[40]Ralph G. Pearson, J. Am. Chem. Soc., 1963, 8, 3533-3539.
[41] 游太平(民91)。中華民國石油季刊。烷化固體酸觸媒的研發進展。第38卷。第2期。Page.44~52。
[42]Kazushi Arata, Applied Catalysis A: General, 1996, 146, 3­-30.
[43]Mark A. Harmer, William E. Farneth, Qun Sun, J. Am. Chem. Soc., 1996, 118, 7708­-7715.
[44]Kozo Tanabe, Wolfgang F. HoÈlderich, Applied Catalysis A: General, 1999, 181, 399-­434.
[45]Simone Adolph, Stefan Spange, Yvonne Zimmermann, J. Phys. Chem. B, 2000, 104, 6429­-6438.
[46]Hideshi Hattori, Top Catal., 2010, 53, 432-­438.
[47]A. Coma, Chem. Rev., 1995, 95, 559­-614.
[48]Elsevier Science Publishers B.V., Applied Catalysis, 1999, 61, 1­-25.
[49]Ganapati D. Yadav, Jayesh J. Nair, Microporous and Mesoporous Materials, 1999, 33, 1­-48.
[50]Miki Niwa, Naonobu Katada, Masahiko Sawa, Yuichi Murakami, J. Phys. Chem., 1995, 99, 8812­-8816.
[51]Francesco Arena, Roberto Dario, Adolfo Parmaliana, Applied Catalysis A: General, 1998, 170, 127-­137.
[52]Naonobu Katada, Miki Niwa, Catal. Surv. Asia, 2004, 8, 161­-170.
[53]Teruoki Tago, Yoshihito Okubo, Shin R. Mukai, Tsunehiro Tanaka, Takao Masuda, Applied Catalysis A: General, 2005, 290, 54-­64.
[54]Olivia Salome´ G. P. Soares, Jose´ J.M. O´ rfao, Manuel Fernando R. Pereira, Ind. Eng. Chem. Res., 2010, 49, 7183­7192.
[55]E. P. Parry, Journal of Catalysis., 1963, 2, 371-­379.
[56]Johannes A. Lercher, Christian GriJndling, Gabriele Eder-Mirth, Catalysis Today, 1996, 27, 353-­376.
[57]G. Busca, Phys. Chem. Chem. Phys., 1999, 1, 723­-736.
[58]Mohamed I. Zaki, Muhammad A. Hasan, Fakhryia A. Al-Sagheer, Lata Pasupulety, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2001, 190, 261-­274.
[59]Burton H. Davis, Robert A. Keogh, Saeed Alerasool, David J. Zalewski, David E. Day, Patricia K. Doolin, Journal of Catalysis, 1999, 183, 45-­52.
[60]Bob R. G. Leliveld, Meike J. H. V. Kerkhoffs, Fred A. Broersma, Jos A. J. van Dillen,John W. Geus, Diek C. Koningsberger, J. Chem. Soc., Faraday Trans., 1998, 94, 315­321.
[61]Gang Wang, Quanjie Liu, Weiguang Su, Xiujie Li,Zongxuan Jiang, Xiangchen Fang, Chongren Han, Can Li, Applied Catalysis A: General, 2008, 335, 20­-27.
[62]Minli Zhu, Zengxi Li, Qian Wang, Xueyuan Zhou, Xingmei Lu, Ind. Eng. Chem. Res., 2012, 51, 11659­-11666.
[63]A.I. Tropecelo, M.H. Casimiro, I.M. Fonseca, A.M. Ramos, J. Vital, J.E. Castanheiro, Applied Catalysis A: General, 2010, 390, 183­-189.
[64]A. Palani, A. Pandurangan, Journal of Molecular Catalysis A: Chemical, 2005, 226,129­-134.
[65]Kyong-Hwan Chung, Byung-Geon Park, J. Ind. Eng. Chem., 2009, 15, 388-­392.
[66]Xiangju Meng, Faisal Nawaz, Feng-Shou Xiao, Nano Today, 2009, 4, 292-­301.
[67]Maria D. Hernandez-Alonso, Sergio Garcia-Rodriguez, Silvia Suarez, R. Portela, B. Sanchez, J. M. Coronado, Appl. Catal. B: Environ., 2011, 110, 251-­259.
[68]Huan Chen, Yun Shao, Zhaoyi Xu, Haiqin Wan, Yuqiu Wan, Shourong Zheng, Dongqiang Zhu, Appl. Catal. B: Environ., 2011, 105, 255­-262.
[69]Sungchul Lee, Zhiteng Zhang, Xiaoming Wang, Lisa D. Pfefferle, Gary L. Haller, Catalysis Today, 2011, 164, 68-73.
[70]Feng Peng, Lei Zhang, Hongjuan Wang, Ping Lv, Hao Yu, Carbon, 2005, 43, 2397­-2429.
[71]Hao Yu, Yuguang Jin, Zhili Li, Feng Peng, Hongjuan Wang, J. Solid State Chem., 2008, 181, 432-­438.
[72]Qing Shu, Qiang Zhang, Guanghui Xu, Zeeshan Nawaz, Dezheng Wang, Jinfu Wang, Fuel Processing Technology, 2009, 90, 1002­-1008.
[73]Qing Shu, Qiang Zhang, Guanghui Xu, Jinfu Wang, Food and Bioproducts Processing, 2009, 87, 164-170.
[74]Xiao-Hong Zhanga, Qian-Qian Tanga , Dong Yanga, Wei-Ming Huab, Ying-Hong Yueb, Bei-Di Wanga , Xiao-Huan Zhanga, Jian-Hua Hu, Materials Chemistry and Physics, 2011, 126, 310-­313.
[75]Abd El Rahman S. Khder, Hassan M.A. Hassana, M. Samy El-Shall, Applied Catalysis A: General, 2012, 411-­412, 77-­86.
[76]Joon Ching Juan, Yajie Jiang, Xiujuan Meng, Weiliang Cao, Mohd Ambar Yarmo, Jingchang Zhang, Mater. Res. Bull., 2007, 42, 1278­-1285.
[77]Masaaki Kitano, Emiko Wada, Kiyotaka Nakajima, Shigenobu Hayashi, Souichi Miyazaki, Hisayoshi Kobayashi, Michikazu Hara, Chem. Mater., 2013, 25, 385­-393.
[78]劉志緯。鈦酸鹽奈米管支撐之鉑金屬觸媒的酸性研究。國立彰化師範大學化學系碩士論文。2012年。
[79]Sanjay M. Mahajani, Aspi K. Kolah, Man Mohan Sharma, Reactive &; Functional Polymers, 1995, 28, 29-38.
[80]G.D. Yadav, A.A. Pujari, The Canadian Journal of Chemical Engineering, 1999, 77, 489-­496.
[81]Chin-Yao Hsu, Tsai-Chin Chiu, Meng-Hung Shih, Wei-Je Tsai, Wei-Yi Chen, and Chiu-Hsun Lin, J. Phys. Chem. C, 2010, 114, 4502­-4510.
[82]Edisson Morgado Jr, PMJardim, Bojan A Marinkovic, Fernando C Rizzo, Marco A S de Abreu, Jos´e L Zotin, Antonio S Ara´ujo, Nanotechnology,2007, 18, 495710-­495720.
[83]Sergey P. Verevkin, J. Chem. Eng. Data, 2002, 47, 1071­1097.
[84]Wolfgang W. Schoeller, Thomas Dabisch, J. Chem. Soc. Chem. Commun., 1985, 1706-1707.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔