(18.207.129.82) 您好!臺灣時間:2021/04/19 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉怡伶
研究生(外文):Yi-Ling Liu
論文名稱:黑翅土白蟻與蟻巢傘菌的共生關係中真菌所分離出同核菌株的漆氧化酶基因之遺傳分析
論文名稱(外文):Genetic analysis of laccase genes in homokaryotic isolates of the termite-associated fungus Termitomyces
指導教授:賴吉永賴吉永引用關係
指導教授(外文):Chi-Yung Lai
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:108
中文關鍵詞:黑翅土白蟻蟻巢傘菌木質纖維素漆氧化酶遺傳分析同核活性分生孢子
外文關鍵詞:Odontotermes formosanusTermitomyceslignocelluloselaccasegenetic analysishomokaryoticactivityconidia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:336
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在台灣地區分布最廣泛和數量最多的白蟻是黑翅土白蟻(Odontotermes formosanus),它是以各種死亡的植物組織為食來獲得植物纖維,而這些植物纖維擁有高度多樣化的成分、結構和特性,白蟻藉著共生微生物才可以有效的利用它。與黑翅土白蟻共生的真菌是蟻巢傘菌(Termitomyces),而蟻巢傘菌會產生大量的酵素來分解木質纖維素(lignocellulose),漆氧化酶(EC1.10.3.2)是多銅氧化酶也屬於藍色氧化酶家族。它們主要在高等植物和真菌中被發現。它們有高適應性的受質專一性,使漆酶能有多樣化的應用,包括紡織品染料的漂白、紙漿的漂白、葡萄酒變色和生物修復。文獻指出野外生長的白蟻,可經篩選獲得分解各種植物木質素的蟻巢傘菌菌株,意味蟻巢傘菌基因體有足夠的遺傳容量、變異性和遺傳重組的彈性,以產生菌株間漆氧化酶的多樣性。本研究要獲得黑翅土白蟻巢中單孢培養的同核菌株,並進一步分析漆氧化酶基因的數目和交配型的數目,以及漆氧化酶活性。在三種不同時間與地點採集長自黑翅土白蟻巢的雞肉絲菇(蟻巢傘菌的子實體),將它分離成單孢培養,並以純化PCR產物進行定序,核糖體RNA基因中的ITS區域以純培養中的兩個不同ITS類型。再將不同ITS類型的單孢培養之同核菌株做兩兩交配,觀察它的外觀形態和定序結果,加以證明單孢培養是具有交配能力的異核菌株。利用Enzyme assay測定其酵素活性,實驗結果顯示,漆氧化酶的分子量約為64 kDa,和這些菌株的漆氧化酶活性範圍為3.03 U/ml至0.101 U/ml。使用
DAPI螢光染雞肉絲菇同核和異核的分生孢子之細胞核,沒有發現明顯的型態差異。還有發現分生孢子形成的菌落所產生漆氧化酶產量比菌絲體形成的菌落所產生漆氧化酶產量差異較大。
The most widely distributed and numerous termites in Taiwans is Odontotermes formosanus,which feeds on a variety of dead plant tissues for food. The plant fiber is diverse in composition, structure and characteristics such that termites must rely on symbiotic microorganisms to use it effectively. Fungi of the genus Termitomyces live in an obligate symbiosis with O. formosanus, and the Termitomyces mycelium produces a large number of enzymes to degrade lignocellulose. Laccase (EC1.10.3.2) is a multi-copper oxidasesbelonging to the group of blue oxidases, and is predominantly found in higher plants, fungi, bacteria and insects. The substrate flexibility of laccases makes them highly suited for industrial applications including textile dye bleaching, pulp bleaching , prevention of wine
discoloration and bioremediation. The literature indicates that in their natural habitats termites can select for Termitomyces strains suitable for a specific type oflignocellulose derived from various plants, indicating that the Termitomyces genome contains the genetic
capacity and variability, together with flexible mechanisms of genetic recombination, to produce a wide range of laccase substrate specificity. In this study, I obtained homokaryotic strains of Termitomyces. These strains will be used to analyze genes of the mating system and laccase family, as well as their expression and ways of inheritance. At three different times and places, Termitomyces strains were isolated into monospore cultures from sexual fruit
bodies growing from termite nests. DNA was extracted from the monospore cultures and the ITS region was amplified by PCR, purified, and sequenced. I found two types of the ITS
regions segregated among the monospore cultures. Homokaryotic strains of different ITS types were mated, and the resulting heterokaryotic strains were characterized by their morphology and ITS sequences. These results proved that the initial monospore cultures were indeed homokaryotic. We used enzyme assay to determine the enzyme activity. The results show that the molecular weight of laccase is approximately 64 kDa, and the production of laccase by the these strains varied in the range of 3.03 U/ml to 0 .101 U/ml. There was no clear morphological di ff erence between the homokaryotic and heterokaryotic strains of Termitomyces and in the number of nuclei per spore as examined by DAPI fluorescence staining. I discovered that the di ff erencet levels of laccase production of the conidia of a single cultivar was large than that of the mycelia.
致謝.....................................................3
摘要.....................................................4
Abstract................................................5
目錄.....................................................7
圖目錄..................................................10
表目錄..................................................11
附錄目錄................................................11
縮寫表..................................................13
壹、前言................................................14
一、黑翅土白蟻...........................................14
(一)黑翅土白蟻和雞肉絲菇間的共生關係..........................14
(二)黑翅土白蟻和雞肉絲菇間的生活史...........................15
(三)蟻巢傘菌的生活史......................................15
二、雞肉絲菇.............................................16
(一)雞肉絲菇之形狀特徵....................................16
(二)雞肉絲菇之營養組成....................................17
(三)雞肉絲菇之應用 ......................................17
三、木質素...............................................17
(一)白腐真菌之木質素分解酵素................................18
四、漆氧化酶.............................................19
(一)漆氧化酶之生理功能.....................................19
(二)漆氧化酶之多型性.......................................20
(三)漆氧化酶之反應機制.....................................21
(四)漆氧化酶之蛋白質結構...................................21
(五)漆氧化酶之催化酚類物質的氧化.............................22
(六)漆氧化酶之應用........................................23
五、研究動機與目的........................................26
貳、材料與方法...........................................27
一、實驗藥品與試劑........................................27
二、實驗菌株.............................................28
三、培養基成分...........................................28
四、單孢的分離與培養......................................28
(一)單孢之分離..........................................28
(二)孢子之發芽率.........................................29
(三)菌種之保存方法.......................................29
五、Homokaryon rDNA和Heterokaryon rDNA 與 ITS 序列分析之鑑定.....................................................29
(一)純化菌株 DNA...................................................29
(二)聚合酵素連鎖反應(Polymerase Chain Reaction,PCR).......30
(三)DNA 瓊脂膠電泳分析(DNA Agarose Gel Electrophoresis)..31
(四)純化 PCR 產物(Viogen PCR-M PCR Purification Kit).....32
(五)DNA 定序............................................33
六、Homokaryon 間進行交配................................32
七、蟻巢傘菌之液態培養和漆氧化酶之生產與純化...................33
八、漆氧化酶活性測定......................................34
(一)漆氧化酶分析試劑之配置.................................34
(二)漆氧化酶活性測定之步驟.................................34
(三)酵素活性(U)的定義和計算公式............................34
九、蛋白質電泳膠體分析(SDS-PAGE 及 Native-PAGE)............35
(一)SDS 聚乙烯醯胺膠體電泳(Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis, SDS-PAGE))........35
(二)SDS 聚乙烯醯胺膠體電泳之染色方式........................37
(三)非變性聚丙烯醯胺膠體電泳(Native Polyacrylamide Gel
Electrophoresis, Native-PAGE).........................38
(四)非變性聚丙烯醯胺膠體電泳之 ABTS 活性染色方式..............39
十、Guaiacol 測量漆氧化酶活性.............................39
十一、顯微鏡觀察和 DAPI 螢光染色...........................39
十二、雞肉絲菇的菌絲體和分生孢子形成的菌落之漆氧化酶活性.........40
(一)雞肉絲菇的分生孢子菌落之挑選與漆氧化酶活性測定.............40
(二) Guaiacol 平盤培養基觀察的蟻巢傘菌分生孢子菌落之漆氧化酶活性....................................................41
(三)雞肉絲菇的菌絲體菌落之挑選與漆氧化酶活性測定...............41
(四) Guaiacol 平盤測量菌絲體菌落之漆氧化酶活性..............41
參、結果...............................................42
一、不同溶液所分離雞肉絲菇之擔孢子的效果......................42
二、雞肉絲菇之孢子發芽率..................................42
三、雞肉絲菇之最初菌絲體的形態和單孢培養的菌株................42
四、雞肉絲菇之單孢培養的分子生物學 rDNA 與 ITS 序列分析.......43
五、不同 ITS 序列的疑似同核菌株進行交配並分析菌落形態..........44
六、雞肉絲菇之交配菌株的分子生物學 rDNA 與 ITS 序列分析........45
七、雞肉絲菇同核和異核菌株的漆氧化酶之液態培養.................46
八、雞肉絲菇同核和異核菌株的漆氧化酶之活性與蛋白質膠體分析.......46
九、利用 Guaiacol 比較雞肉絲菇同核和異核菌株的漆氧化酶之活性....47
十、比較雞肉絲菇同核和異核菌株的 DAPI 螢光染色................47
十一、比較雞肉絲菇的菌絲體和分生孢子形成的子代菌落之漆氧化酶活性...48
肆、討論................................................49
一、比較雞肉絲菇與一般真菌.................................49
二、雞肉絲菇菌株的分子生物學 rDNA 與 ITS 序列分析.............50
三、比較雞肉絲菇同核和異核菌株的漆氧化酶之活性..................50
四、比較雞肉絲菇的菌絲體和分生孢子形成的子代菌落之漆氧化酶活性......52
伍、結論.................................................53
參考文獻.................................................54
圖......................................................65
圖一、不同時間與地點採集所得雞肉絲菇子實體之孢子印...............65
圖二、不同溶液所分離雞肉絲菇之擔孢子..........................66
圖三、雞肉絲菇之孢子發芽率..................................67
圖四、最初期的雞肉絲菇之單孢菌絲體............................68
圖五、雞肉絲菇之單孢培養菌株的 PCR 產物之 DNA 電泳膠體分析圖......69
圖六、雞肉絲菇之單孢培養菌株的 ITS 序列電泳圖譜表...............70
圖七、雞肉絲菇之單孢培養菌株的 ITS 序列比對結果.................73
圖八、經 ITS 序列電泳圖譜表判斷可能為雞肉絲菇之同核菌株平盤培養....74
圖九、雞肉絲菇交配測試菌落形態...............................76
圖十、雞肉絲菇之交配菌株的 PCR 產物之 DNA 電泳膠體分析圖.........78
圖十一、比較雞肉絲菇之同核和異核菌株的 ITS 序列電泳圖譜表.........79
圖十二、雞肉絲菇同核和異核菌株的漆氧化酶之液態培養...............81
圖十三、雞肉絲菇同核和異核菌株的漆氧化酶之活性(第一次)............82
圖十四、雞肉絲菇同核和異核菌株的培養液之 SDS-PAGE(Coomassie blue)電泳膠圖
(第一次).................................................83
圖十五、雞肉絲菇同核和異核菌株的培養液之 SDS-PAGE(銀染)電泳膠圖(第一
次).....................................................84
圖十六、雞肉絲菇同核和異核菌株的培養液之 Native-PAGE(ABTS 活性染色)電泳膠
圖(第一次) ..............................................85
圖十七、雞肉絲菇同核和異核菌株的漆氧化酶之活性(第二次)............86
圖十八、雞肉絲菇同核和異核菌株的培養液之 SDS-PAGE(銀染)電泳膠圖(第二次)....................................................87
圖十九、雞肉絲菇同核和異核菌株的培養液之 Native-PAGE(ABTS 活性染色)電泳膠
圖(第二次)..............................................88
圖二十、雞肉絲菇同核和異核菌株的漆氧化酶之活性(第三次)...........89
圖二十一、雞肉絲菇同核和異核菌株的培養液之 SDS-PAGE(銀染)電泳膠圖(第三
次)....................................................90
圖二十二、雞肉絲菇同核和異核菌株的培養液之 Native-PAGE(ABTS 活性染色)電泳
膠圖(第三次)........................................... 91
圖二十三、雞肉絲菇同核和異核菌株的漆氧化酶之活性平均值和標準差.....92
圖二十四、使用 Guaiacol 測量雞肉絲菇同核和異核菌株的漆氧化酶之活性.....................................................93
圖二十五、雞肉絲菇同核和異核菌株的型態........................94
圖二十六、雞肉絲菇同核和異核菌株的 DAPI 螢光染色...............95
圖二十七、雞肉絲菇同核菌株的菌絲體和分生孢子之漆氧化酶活性........96
圖二十八、使用 Guaiacol 測量雞肉絲菇同核菌株的分生孢子之漆氧化酶活性.....................................................97
圖二十九、使用 Guaiacol 測量雞肉絲菇同核菌株的菌絲體之漆氧化酶活性.....................................................98
表.....................................................99
表一、雞肉絲菇之單孢培養菌株................................99
表二、rDNA內轉錄區的基因區域位置圖及轉錄 rDNA所需之引子.........100
表三、兩個不同 ITS 類型的單孢培養菌株進行交配..................101
表四、使用 Guaiacol 測量雞肉絲菇同核菌株菌絲體的漆氧化酶活性之 F-test...................................................102
附錄...................................................103
附錄一、雞肉絲菇(蟻巢傘菌的子實體)...........................103
附錄二、木質醇單體結構.....................................104
附錄三、常用受質結構.......................................105
附錄四、Components of the kit( Plant Genomic DNA Purification Kit) .....................................106
附錄五、蘑菇的擔孢子.......................................107
附錄六、高等擔子菌的扣子體(取自Rran-eng網站)..................108
1. Aanen, D. K., Eggleton, P., Lefevre, C. R., Froslev, T. G., Rosendahl, S. and Boomsma J. 2002. The evolution of fungus-growing termites and their mutualistic fungal symbionts. PNAS. 99(23): 14887-14892.
2. Aanen, D. K., de Fine Licht, H. H., Debets, A. J., Kerstes, N. A., Hoekstra, R. F.and Boomsma, J. J. 2009. High symbiont relatedness stabilizes mutualistic cooperation in
fungus-growing termites. Science 326: 1103-1106.
3. Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco-Paulo, A. and Gubitz, G. M. 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes
hirsuta. Appl. Environ. Microbiol. 66(8): 3357-62.
4. Alcalde, M., Bulter, T. and Zumarraga, M. 2005. Screening mutant libraries of fungal laccases in the presence of organic solvents. J. Biomol. 10: 624-631.
5. Arora, S. D. and Gill, P. K. 2001. Effects of various media and supplements on laccase production by some white rot fungi. Biores. Technol. 77: 89-91.
6. Baiocco, P, Barreca, A. M., Fabbrini, M., Galli, C. and Gentili, P. 2003. Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some
laccase-mediator systems. Org. Biomol. Chem. 1(1): 191-7.
7. Bajpai, P., Anand, A. and Bajpai, P. K. 2006. Bleaching with lignin-oxidizing enzymes. Biotechnol. Annu. Rev. 12: 349-378.
8. Bauer, C. G., Kuhn, A., Gajovic, N., Shorobogatko, O., Holt, P.-J., Bruce, N. C., Makower, A., Lowe C. R. and Scheller F.W. 1999. New enzyme sensors for morphine and
codeine based on morphine dehydrogenase and laccase. Fresenius J. Anal. Chem. 364: 179-183.
9. Beloqui, A., Pita, M., Polaina, J., Martínez-Arias, A., Golyshina, O. V., Zumárraga, M., Yakimov, M. M., García-Arellano, H., Alcalde, M., Fernández, V. M., Elborough, K.,
Andreu, J. M., Ballesteros, A., Plou, F. J., Timmis, K. N., Ferrer, M. and Golyshin, P. N. 2006. Novel polyphenol oxidase mined from a metagenome expression library of bovine
rumen. J. Biol. Chem. 281: 22933-22942.
10. Berka, R., Schneider, P., Golightly, E., Brown, S., Madden, M., Brown, K., Halkier, T., Mondorf, K. and Xu, F. 1997. Characterization of the gene encoding an extracellular
laccase of Myceliophthora thermophile and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl. Environ. Microbiol. 63: 3151-3157.
11. Bermek, H. and Eriksson, K. E. L. Laccase-less mutants of the white-rotfungus Pycnoporus cinnabarinus cannot delignify kraft pulp. J. Biotechnol. 1998;66:117–124.
12. Boerjan, W., Ralph, J. and Baucher, M. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54: 519-46.
13. Bose, S., Mazumder, S. and Mukherjee, M. 2007. Laccase production by the white-rot fungus Termitomyces clypeatus. J. Basic Microbiol. 47: 127-131.
14. Bourbonnais, R. and Paice, M. G. 1990. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS. Lett. 267: 99-102.
15. Breznak, J. A. and Brune, A. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487
16. Bumpus, J. A. and Aust, S. D. 1987. Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysospo~um: involvement of the lignin degrading system. BioEssays. 6: 166-170.
17. Chandel, A. K., Kapoor, R. K., Singh, A. and Kuhad, R. C. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM
3501. Bioresour. Technol. 98: 1947-1950.
18. Darlington, J. E. C. P. 1994. Nutrition and evolution in fungus-growing ants. In: Hunt, J. H., Nalepa, C. A. Nourishment and evolution in insect societies. Westview Press. Colo. pp. 105-130.
19. De Fine Licht, H. H., Andersen, A. and Aanen, D. K. 2005. Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and
multinucleate cells. Mycol. Res. 109: 314-318.
20. De Vries, O. M. H., Kooistra, W. H. C. F. and Wessels, J. G. H. 1986. Formation of an extracellular laccase by a Schizophyllum commune dikaryon. J.Gen. Microbiol. 132:
2817-2826.
21. Enguita, F. J., Martins, L. O., Henriques, A. O. and Carrondo, M. A. 2003. Crystal
structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J. Biol. Chem. 278: 19416-19425.
22. Ferraroni, M., Myasoedova, N. M., Schmatchenko, V., Leontievsky, A. A., Golovleva, L. A., Scozzafava, A. and Briganti, F. 2007. Crystal structure of a blue laccase from
Lentinus tigrinus: Evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC. Struct. Biol. 7: 60.
23. Forss, K. G. and Fremer, K. E. 2003. The nature and reaction of lignin a new paradigm. Fremer. K-E. Editor.
24. Frøslev, T. G., Aanen, D. K., Læ ssøe, T. and Rosendahl, S. 2003. Phylogenetic relationships of Termitomyces and related taxa. Mycol. Res. 107: 1277-1286.
25. Galli, C., Gentili, P., Jolivalt, C., Madzak, C. and Vadalà, R. 2011. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Appl. Microbiol. Biotechnol. 91: 123-131.
26. Gianfreda, L., Xu, F., Bollag, J. 1999. Laccases: a useful group of oxidoreductive enzymes. 3: 1-25.
27. Golz-Berner, K., Walzel, B., Zastrow, L. and Doucet, O. 2004. Cosmetic and dermatological preparation containing copper-binding proteins for skin lightening.International. Patent. Application.
28. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:95-98.
29. Hattori, M., Konishi, H., Tamura, Y., Konno, K. and Sogawa, K. 2005. Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper,
Nephotettix cincticeps. J. Insect. Physiol. 51: 1359-1365.
30. Hermann, T. E., Kurtz, M. B. and Champe, S. P. 1983. Laccase localized in hulle cells and cleistothecial primordia of Aspergillus nidulans. J. Bacteriol. 154(2): 955-64.
31. Hoopes, J. T. and Dean, J. F. 2004. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant. Physiol. Biochem. 42: 27-33.
32. Huang, C. H. 2004. Nest and colony structure of Odontotermes formosanus (Isoptera: Termitidae). Master Thesis. Tunghai University. Taichung. Taiwan.
33. Hu, J., Jhong, J. H., Huang, J. Y. and Liu, B. R. 2006. Study of flying distance of Odontotermes formosanus. pp. 9-12.
34. Huttermann, A., Mai, C. and Kharazipour, A. 2001. Modification of lignin for the production of new compounded materials. Appl. Microbiol. Biotechnol. 55(4): 387-94.
35. Hyodo, F., Inouea, T., Azumab, J. I., Tayasub, I. and Abea, T. 2000. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes
gilvus (Isoptera; Macrotermitinae). Soil. Biol. Biochem. 32: 653-658.
36. Johjima, T., Inoue, T., Ohkuma, M., Noparatnaraporn, N. and Kudo, T. 2003. Chemical analysis of food processing by the fungus-growing termite Macrotermes gilvus.
Sociobiology. 42: 815–824.
37. Johjima, T., Ohkuma, M. and Kudo, T. 2003. Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus. Appl. Microbiol. Biotechnol. 61: 220-225.
38. Johnson, R. A., Thomas, R.J., Wood, T.G. and Swift, M.J. 1981. The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae(Isoptera) from Nigeria. J. Nat. Hist. 15: 751-756.
39. Jonsson, L., Sjostrom, K., Haggstrom, I., Nyman, P. O. 1995. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of
basidiomycete laccases. Biochim. Biophys. Acta. 1251(2): 210-5.
40. Kamei, I., and Kondo, R. 2006. Simultaneous degradation of commercially produced CNP herbicide and of contaminated dioxin by treatment using the white-rot fungus Phlebia brevispora. Chemosphere. 65: 1221–1227.
41. Katoh, H., Miura, T., Maekawa, K., Shinzato, N. and Matsumoto, T. 2002. Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes
formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Mol. Ecol. 11: 1565-1572.
42. Kirk, T. K., Nakatsubo, F. and Reid, I. D.1983. Further study discounts role for singlet oxygen in fungal degradation of lignin model compounds. Biochem. Biophys. Res. Commun. 111: 200-204.
43. Klonowska, A., Le Petit, J. and Tron, T. 2000. Enhancement of minor laccases production in the basidiomycete Marasmius quercophilus C30. FEMS. Microbiol. Lett. 200: 25-30.
44. Korb, J. and Aanen, D. K. 2003. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites(Macrotermitinae). Behav. Ecol. Sociobiol. 53: 65-71
45. Kuhad, R. C., Singh, A. and Eriksson, K. E. L. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell wall. In: Eriksson KEL, editor.
Biotechnology in the Pulp and paper Industry. Advances in biochemical engineering biotechnology. Berlin: Springer Verlag. Chapter 2.
46. Kunamneni, A., Camarero, S., García-Burgos, C., Plou, F. J., Ballesteros, A. and Alcalde, M. 2008. Engineering and Applications of fungal laccases for organic synthesis. Microb. Cell Fact. 7: 32.
47. Larrondo, L. F., Avila, M., Salas, L., Cullen, D. and Vicuna, R. 2003. Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated
apoprotein and complex isoform patterns. Microbiology. 149(5): 1177-82.
48. Larrondo, L. F., Salas, L., Melo, F., Vicuna, R. and Cullen, D. 2003. A novel extracellular
multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl.
Environ. Microbiol. 69: 6257–6263.
49. Leatham, G. and Stahmann, M. A. 1981. Studies on the laccase of Lentinus edodes: specificity, localization and association with the development of fruiting bodies. J. Gen.
Microbiol. 125: 147-157.
50. Leonowicz, A.,Cho, N. S., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hufrichter, M., Wesenberg, D. and Rogalski, J. 2001. Fungal laccase:
properties and activity on lignin. J. Basic. Microbiol .41(3-4): 185–227.
51. Leontievsky, A. A., Vares, T., Lankinen, P., Shergill, J. K., Pozdnyakova, N. N., Myasoedova N. M., Kalkkinen, N., Golovleva, L. A., Cammack, R., Thurston, C. F. and
Hatakka, A. 1997. Blue and yellow laccases of ligninolytic fungi. FEMS. Microbiol. Lett. 156: 9-14.
52. Leuthold, R. H., Badertscher, S. and Imboden, H. 1989. The inoculation of newly formed fungus comb with Termitomyces in Macrotermes colonies (Isoptera, Macrotermitinae). Insect. Soc. 36: 328-338.
53. Lin, Z.S. 2006. Culture isolation and investigation of bioactivities from Termitomyces eurhizus. Master Thesis. Southern Taiwan University. Tainan. Taiwan.
54. Lobos, S., Larraín, J., Salas, L.,Cullen, D. and Vicuña, R. 1994. Isozymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology. 140: 1691-1698.
55. Mansur, M., Suarez, T. and Gonzalez, A. E. 1998. Differential gene expression in the laccase gene family from Basidiomycete I-62 (CECT 20197). Appl. Environ. Microbiol. 64: 771-774.
56. Mau, J. L., Chang, C. N., Hung, S. J. and Cheng, C. C. 2004. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces
albuminosus mycelia. Food chemistry. 87: 111-118
57. Mayer, A. M. and Staples, R. C. 2002. Laccase: new functions for an old enzyme. Phytochemistry. 60: 551-565.
58. Mendil, D., Uluozlu, O. D., Tuzen, M., Hasdemir, E. and Sar, H. 2005. Trace metal levels in mushroom samples from Ordu, Turkey. Food Chemistry. 91(3): 463-467.
59. Mendonça, R. T., Jara, J. F., González, V., Elissetche, J. P., Freer, J. 2008 . Evaluation of the whiterot fungi Ganoderma australe and Ceriporiopsis subvermispora in
biotechnological applications. J. Ind Microbiol Biotechnol. 35: 1323-1330.
60. Mougin, C., Boukcim, H. and Jolivalt, C. 2009. Soil bioremediation strategies based on the use of fungal enzymes. Springer Berlin Heidelberg. pp. 123-149.
61. Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L. and Schultz, T. R. 2005. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 36: 563-595.
62. Nutting, W. L. 1969. Flight and colony foundation. pp. 233-282.
63. Palmieri, G, Bianco, C, Cennamo, G, Giardina, P, Marino, G, Monti, M and Sannia, G. 2001. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl. Environ. Microbiol. 67(6): 2754-9.
64. Papa, R., Parrilli, E. and Sannia, G. 2009. Engineered marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125: a promising micro-organism for the
bioremediation of aromatic compounds. J. Appl. Microbiol. 106: 49-56.
65. Pearce, M. J. 1997. Termites as insects, Termites: Biology and pest Management. CAB internation. New York. pp. 1-19
66. Ojika, M. and Sakagami, Y. 2000. Termitomycesphins A-D, Novel Neuritogenic Cerebrosides from the Edible Chinese Mushroom Termitomyces albuminosus. Tetrahedron. 56: 5835-5841.
67. Osma, J., Toca-Herrera, J. and Rodr guez-Couto, S. 2010. Uses of Laccases in the Food Industry. Enzyme Research.
68. Riva, S. 2006. Laccases: blue enzymes for green chemistry. Trends. Biotechnol.24: 219-226.
69. Roberts, S. A., Weichsel, A. and Grass, G. 2002. Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 99: 2766-2771.
70. Rouland, C. 2000. Symbiosis with fungi. In: Abe, T., Bignell, D. E. and Higashi M. (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, pp. 289–306.
71. Rouland-Lefèvre, C. 2000. Symbiosis with fungi. In: Abe, T., Bignell, D. E. and Higashi, M. Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht. Pp. 289–306.
72. Ryan, P. J., Gross, D,. Owen, W. J. and Loani, T. L. 1981. The metabolism of chlorotoluron, diuron and CGA 43057 in tolerant and susceptible plants. Pestic Biochem
and Physiol. 16: 213-221.
73. Sanchez-Amat, A., Lucas-Elio, P., Fernandez, E., Garcia-Borron, J. C. and Solano, F. 2001. Molecular cloning and functional characterization of a unique multipotent
polyphenol oxidase from Marinomonas mediterranea. Biochim. Biophys. Acta. 1547: 104-116.
74. Servili, M., DeStefano, G., Piacquadio, P. and Sciancalepore, V. 2000. A novel method for removing phenols from grape must. Am J. Enol. Vitic. 51: 357-361.
75. Sieber, R. 1983. Establishment of fungus comb in laboratory colonies of Macrotermes michaelseni and Odontotermes montanus (Isoptera, Macrotermitinae). Insect. soc. 30: 204-209.
76. Sigoillot, C., Camarero, S. and Vidal, T. 2005. Comparison of different fungal enzymes for bleaching high-quality paper pulps. J. Biotechnol. 115: 333-343.
77. Sirim, D., Wagner, F., Wang, L., Schmid, R. D. and Pleiss, J. 2011. The Laccase Engineering Database: a classification and analysis system for laccases and related
multicopper oxidases. Databas.
78. Solomon, E. I., Sundaram, U. M. and Machonkin, T. E. 1996. Multicopper oxidases and
oxygenases. Chem. Rev. 96: 2563–2605.
79. Sutherland, J., Rafii, B. F., Khan, A. A. and Cerniglia, C. E. 1995. Mechanisms of Polycyclic Aromatic Hydrocarbon Degradation. In: Microbial Transformation and Degradation OF Toxic Organic Chemicals. Young, L. Y. and Cerniglia C. E. (Eds). Wiley-Liss. New York. pp. 269-306.
80. Swamy, J. and Ramsay, J. A. 1999. Effects of Mn
2+ and NH4+ concentrations on laccase and manganese peroxidase production and Amaranth decoloration by Trametes versicolor. Applied. Microbiology and Biotechnology. 51: 391-396.
81. Tagger, S., Périssol, C., Gil, G., Vogt, G. and Le Petit, J. 1998. Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreenoak litter (Quercus ilex L.). Enzyme. Microb. Technol. 23: 372-379.
82. Terron, M. C., Gonzalez, T., Carbajo, J. M., Yague, S., Arana-Cuenca, A., Tellez, A., Dobson, A. D. and Gonzalez, A. E. 2004. Structural close-related aromatic compounds
have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62. Fungal. Genet. Biol. 41(10): 954-62.
83. Thurston, C. F. 1994. The structure and function of fungal laccases. Microbiology. 140: 19-26.
84. Tsai, S. Y., Weng, C. C., Huang, S. J., Chen, C. C. and Mau, J. L. 2005. Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albuminosus
mycelia. Received. 15: 1-6.
85. Turner, E. M., Wright, M., Ward, T., Osborne, D. J. and Self, R. 1975. Production of ethylene and other volatiles and changes in cellulase and laccase activities during the life cycle of the cultivated mushroom, Agaricus bisporus. J. Gen. Microbiol. 91(1): 167-76.
86. Villaasenor, F., Lorea, O., Campero, A. and Viniegra-Gonzalez, G. 2004. Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel
by the latter. Fuel. Processing. Technology. 86: 49–59.
87. White, T.J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications. 315-322.
88. Wesenberg, D., Kyriakides, I. and Agathos, S. N. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187.
89. Williamson, P. R., Wakamatsu, K. and Ito, S. 1998. Melanin biosynthesis in Cryptococcus neoformans. J. Bacteriol. 180(6): 1570-2.
90. Xu, F., Shin, W., Brown, S. H., Wahleithner, J. A., Sundaram, U. M. and Solomon, E. I. 1996. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim.
Biophys. Acta. 1292: 303-311.
91. Yoshida, H. 1883. Chemistry of Lacquer (Urushi) part 1. J. Chem. Soc. 43: 472-486.
92.澤田兼吉。1919。台灣產菌類報告第一編。台灣總督府農事試驗場特別報告第 19號。頁 519-521。
93.鄭燮。1970。雞肉絲菇生長習性研習之研究。中國園藝,16(6),20-24。
94.戴郁軌、朱凱俊。1982。真菌名詞辭典。名山出版社,頁 246。
95.劉波。1984。中國藥用真菌。山西人民出版社,頁 2228。
96.楊新美。1988。中國食用菌栽培學。農業出版社,頁 2584。
97.卯曉嵐。1989。中國食用與藥用大型真菌。微生物學通報,216,頁 290-297。
98.胡宗策、鄭曉冬。2002。Termitomyces albuminosus 液體深層發酵的研究。
99. 邱俊禕、李後鋒、楊曼妙。2010。黑翅土白蟻在臺灣的地理分布與婚飛季節。臺灣昆蟲,30,頁 193-202。
100. 蔡惠利。2004。巴西蘑菇、茶樹菇、牛肝菌和雞腿菇之呈味與抗氧化性質。國立中興大學碩士論文。
101. 吳孟璇。2009。樟芝漆氧化酶基因之分子生物學研究。嘉南藥理科技大學碩士論文。
102. 楊庭毓。2011。蟻巢傘菌漆氧化酶的多樣性。彰化師範大學碩士論文。
103. 陳怡如。2013。硬毛革孔菌漆氧化酶的純化與分析。彰化師範大學碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔