(34.239.176.198) 您好!臺灣時間:2021/04/23 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林芳伊
研究生(外文):Fang-Yi Lin
論文名稱:兩種小球藻於營養逆境下對其生長及油脂累積之影響
論文名稱(外文):Effect of nutrients stress on the growth and lipid accumulation in two Chlorella species
指導教授:王瑋龍王瑋龍引用關係
指導教授(外文):Wei-Lung Wang
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:61
中文關鍵詞:微藻生物質量脂質小球藻
外文關鍵詞:microalgaebiomasslipidChlorella sp.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:187
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用兩種Chlorella培養於缺乏不同元素N, P, Fe, Mg, Ca之培養液逆境當中,探討對其於生長及脂肪累積之影響。當藻類經過七天生長到最大生長期後,移至分別移除單一元素後的培養基中,在相同條件環境之下(溫度25℃,光照強度90-100 μmol/m2s與12:12 h light : dark),培養7天。連續測量其吸光值 (optical density)、生物質量乾重以及以計數法同時測量其生長變化,另外以葉綠素螢光測定儀測量其最大量子效率 (Fv/Fm)質以觀察藻類健康情況。接著在第一、第三及第七天取出生物質量,利用脂質乾重法將藻類乾燥並萃取後獲得脂肪乾重。此兩種Chlorella培養在正常培養基下0-7天,在第七天有最大細胞密度,分別為0.35 g/L及0.39 g/L。而缺乏單一元素添加的培養下,其生長皆隨著天數的增加而遞減,在最大量子效率中 (Fv/Fm)也顯示出生長情況有明顯的下降。而隨著培養在逆境中的生長速率下降,兩種Chlorella sp.的脂肪含量皆有增加的趨勢。Chlorella sp. 1在第三天開始就有脂肪累積的現象,其中以缺乏鐵元素在第五天有最高含量約3.4%;Chlorella sp. 2在第五天才開始累積脂肪,同樣以缺鐵培養下有最高脂肪含量累積高達15.3%。雖然Chlorella sp. 2要培養到第七天才能獲得最佳脂肪含量,但脂肪含量整體皆比Chlorella sp. 1高出許多,因此油脂性藻類Chlorella sp. 2有較好的潛力作為提取脂質的藻類。
This study investigated two kinds of Chlorella cultivated in lack of the different elements of N, P, Fe, Mg, Ca, and to measure the effect on its growth and lipid accumulation. When the algae were cultivated in the media seven days after exponential growth phase, then moved to the medium be removed a single element and incubated under identical environment conditions (temperature 25 ℃, light intensity 90-100 μmol/m2s, and 12:12 h light: dark) for 7 days. Continuous measurement of absorbance (optical density), the dry weight of biomass and direct counting method measured the growth of those two Chlorella, in addition using chlorophyll fluorescence PAM to measure the maximum quantum efficiency (Fv/Fm) to observe algae health conditions. Then take out 0.5 g dry weight of algae at the first, third and seventh days, and use the method of lipid drying weight to extracting lipid. Those two Chlorella cultivated in normal medium for 0-7 days, it has the maximum cell density, 0.35 and 0.39 g/L on day 7, respectively. The growth rates of those two Chlorella are decreasing as days increasing under the medium lack of single element, and the maximum quantum efficiency (Fv/Fm) showed significantly decreasing. The two kinds of Chlorella cultivated in the stress condition have decreased in the growth rate, and increased in the lipid contents. Chlorella sp. 1 has lipid accumulation on day 3, it has the highest lipid content about 3.4 % when cultivated under deprived of iron at day 5. Chlorella sp. 2 begin to accumulate lipid on day 5, and has the highest lipid content, 15.3 %, in deprived of iron on day 7. Although Chlorella sp. 2 obtain the best lipid content until day 7, but the totally lipid contents are more than Chlorella sp. 1. Therefore, Chlorella sp. 2 has the potential for extracting lipids as the oleaginous algae.
目錄

誌謝 Ⅰ
摘要 Ⅱ
Abstract Ⅲ
圖目錄 Ⅳ
表目錄 Ⅴ
目錄 Ⅵ

第一章 前言 1
1.1研究背景 1
1.2研究動機與目的 4
第二章 文獻回顧 5
2.1藻類 5
2.1.1 藻類介紹 5
2.1.2 小球藻 7
2.2藻類生理機制 9
2.2.1 光合作用 9
2.2.2 脂肪合成代謝過程 11
2.3影響藻類的生長環境因子 13
2.3.1 光照強度 13
2.3.2 溫度 15
2.3.3 碳源 17
2.4營養元素對藻類的生理影響 20
2.4.1 氮 20
2.4.2 磷 21
2.4.3 矽 22
2.4.4 鐵 22
2.5油脂之萃取 23
2.5.1 有機溶劑萃取法 (Chemical extraction) 23
2.5.2 超音波萃取法 (Ultrasonic extraction) 24
2.5.3 索氏萃取法(Soxhlet extraction) 24
2.5.4 超臨界流體萃取法 (Supercritical fluid extraction) 25
第三章 材料方法 27
3.1 藻類培養 27
3.1.1 藻類品種 27
3.1.2 培養液成分 27
3.1.3 培養環境 28
3.2 藻類生長測量 29
3.2.1 比色法 29
3.2.2 顯微計數法 29
3.2.3 乾燥秤重法 30
3.2.4 葉綠素螢光測定法 30
3.3 粗脂質萃取方法 32
3.4 統計分析 32
第四章 結果 34
4.1不同營養元素對藻類生長之影響 34
4.2不同營養元素對藻類脂肪含量之影響 39
第五章 討論 44
第六章 結論 51
參考文獻 52

圖目錄
圖2-1 光合作用之光反應電子傳遞路竟示意圖 10
圖2-2 脂肪酸合成代謝路徑 12
圖2-3 CO2的壓力/溫度相 26
圖3-1 Chlorella sp. 全波長圖譜 29
圖4-1 不同營養逆境下對Chlorella sp. 1 生長之影響 36
圖4-2 不同營養逆境下對Chlorella sp. 2 生長之影響 37
圖4-3 兩種 Chlorella培養於不同營養逆境下之最大量子效率(Fv/Fm)38
圖4-4 Chlorella sp.1培養於不同營養逆境於不同時間之脂肪含量 42
圖4-5 Chlorella sp.2培養於不同營養逆境於不同時間之脂肪含量 43

表目錄
表3-1 BG-11營養鹽成分 28
表4-1 不同營養元素限制之生長速率 49
表4-2 Chlorella sp.1 於不同營養元素限制下之油脂含量 49
表4-3 Chlorella sp.2 於不同營養元素限制下之油脂含量 49
表4-4 前人研究中不同種Chlorella 於營養逆境下脂肪含量之比較 50
陳美惠,2001。淺談綠藻。食品工業。33: 45-56
劉清標,2000。海洋微藻Isochrysis sp. CCMP 超微細結構與多元不飽和脂肪酸之生成。國立台灣大學農業化學研究所 博士論文。
Anning, T., G. Harris, R.J. Geider, 2001. Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillariophyceae). Eur. J. Phycol. 36: 233–241.
Bajhaiya, A.K., S.K. Mandotra, M.R. Suseela, Kiran Toppo and S.Ranade, 2010. ALGAL BIODIESEL: the next generation biofuel for India. National Botanical Research Institute, Lucknow, India. ASIA J. EXP. BIOL. SCL. VOL 1(4): 728-739.
Beardall, J., E. Young, and S. Roberts, 2001. Approaches for determining phytoplankton nutrient limitation. Aquat. Sci. 63: 44–69.
Benemann, J.R., 1997. CO2 mitigation with microalgae systems, Energy Convers. Manage. 38 : 475–479.
Bigogno, C., I. Khozin-Goldberg, D. Adlerstein, and Z. Cohen, 2002a. Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chloropyceae): radiolabeling studies.Lipids 37:209–216.
Bligh, E.G., and W.J. Dyer, 1959. A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol.37: 911–917.
Brennan, L., and P. Owende, 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 14: 557–577.
Brooks, S.P.J., W.M.N. Ratnayake, B.J. Lampi, and R. Hollywood, 1998. Measuring Total Lipid Content in Rat Carcasses: A Comparison of Commonly Employed Extraction Methods, J. Agr. Food Chem. 46:4214–4217.
Borowiztka, M., and L. Borowitzka, 1988. Dunadiella. In: Microalgal biotechnology. Borowiztka, M., and Borowitzka, L. (Ed). Cambridge University Press. Cambridge. UK. Pp 27-58.
Burrows 1991. Seaweeds of the British Isles. Volume 2 Natural History Museum, London. ISBN 0-565-00981-8.
Carrapiso, A. I. and C. García, 2000. Review: Development in lipid analysis: some new extraction techniques and in situ transesterification. Laboratory of Food Technology, Extremadura University, 10071 Cáceres, Spain. Lipids, Vol. 35, no. 11.
Chen, F., 1996. High cell density culture of microalgae in heterotrophic growth. Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong.
Chen, F., Y. Zhang, and S. Guo, 1996. Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters. 18(5):603–8.
Chen, M., H. Tang , H. Ma, T.C. Holland, K.Y. Simon Ng, and S.O. Salley, 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology 102: 1649–1655.
Chisti, Y., 2007a. Biodiesel from microalgae. Biotechnology Advances 25, 294–306.
Chisti, Y., 2007b. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 26, 6.
Chojnacka, K., and A. Noworyta, 2004. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology 34(5):461–5.
Cid, H., M. Bunster, M. Canales, and F. Gazitura, 1992. Protein Engna, 5, 373-375.
Cohen, Z., 1999. Production of polyunsaturated fatty acids by the microalga Porphyridium cruentum. In: Cohen Z (ed) Production of chemicals by microalgae. Taylor and Francis, London, pp 1–24.
Converti, A., A.A. Casazza, E.Y. Ortiz, P. Perego, and M.D. Borghi, 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing 48: 1146–1151.
Dayananda, C., R. Sarada, M. Usha Rani, T.R. Shamala, and G.A. Ravishankar, 2007.Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass and Bioenergy 31, 87–93.
Demirbaş, A., 2010. Production of Biodiesel from Algae Oils. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.
Depauw, N. and G. Pruder, 1981. Use and production of microalgae as food in aquaculture. Paper presented at the World Conference on Aquaculture, sept. Venice Italy.
Dobush, G.R., D. Ankney, and D.G. Krementz, 1985. The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geese. Can. J. Zool. 63:1917–1920.
Dote, Y., S. Sawayama, S. Inoue, T. Minowa, and S. Yokoyama, 1994. Recovery of Liquid Fuel from Hydrocarbon-Rich Microalgae by Thermochemical Liquefaction. Fuel, 73,1855.
Feng, D., Z. Chen, S. Xue, and W. Zhang, 2011. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresource Technology Volume 102, Issue 12, Pages 6710–6716.
Folch, J., M. Lees, and G.H. Sloane Stanley, 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.
Ginzburg, B.Z., 1993. Liquid Fuel (Oil) from Halophilic Algae: A Renewable Source of Non-Polluting Energy. Renew. Energy, 3, 249.
Griffiths, M.J., and S.T.L. Harrison, 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology 21:493–507.
Guschina, I.A. and J.L. Harwood, 2006. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45: 160–186.
Hallenbeck, P.C., and J.R. Benemann, 2002. Biological hydrogen production: fundamentals and limiting processes. Int. J. Hydrogen Energ. 27: 1185–1193.
Harun, R., M. Singh, G.M. Forde, and M.K. Danquah, 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energy Rev.14: 1037–1047.
Harwood, J.L., and A.L. Jones, 1989. Lipid metabolism in algae. Advances in Botanical Research Incorporating Advances in Plant Pathology 16, 1–53.
Healey, F.P., 1982. Phosphate. In: Carr, N.G., Whitton, B.A. (Eds.), The Biology of Cyanobacteria. Blackwell Scientific, Oxford.
Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal 54: 621–639.
Huntley, M.E., D.G. Redalje, 2006. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation and Adaptation Strategies for Global Change 12, 573–608.
Illman, A.M., A.H. Scragg, and S.W. Shales, 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech. 27: 631–635.
Iwamoto, H., 2004. Industrial production of microalgal cell-mass and secondary products – major industrial species Chlorella. In: Richmond, A. (ed.): Handbook of Microbial Culture,Biotechnology and Applied Phycology. Oxford, 255-263 p.
Karel, L. 1996. Effect of O2, CO2 and temperature on the light saturated growth of Scenedesmus obliquus. Algological Studies, International Journal of Phycological Research, 82: 69-82.
Klass, D.L., 2004. Biomass for renewable energy and fuels. In: Cleveland, C.J., Ayres,R.U. (Eds.), Encyclopedia of Energy. Elsevier Academic Press, Amsterdam, pp.193–212.
Klyachko-Gurvich, G., L.N. Tsoglin, J. Doucha, J. Kopetskii, B.I. Shebalina, V.E. Semenenko, 1999. Desaturation of fatty acids as an adaptive response to shifts in light intensity. Physiol Plant 107:240–249.
Lee, R.E., 1980. Phycology. New York: Cambridge University Press.
Letellier, M. and H. Budzinski, 1999. Microwave Assisted Extraction of Organic Compounds. Analusis, 27, 259.
Levasseur M.E., J.C. Morissette, R. Popovic, P. Harrison, 1990. Effects of long term exposure to low temperature on the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae). J. Phycol. 26: 479–484.
Li, Y., M. Horsman, N. Wu, C.Q. Lan, and N. Dubois Calero, 2008. Biofuels from microalgae,Biotechnol. Progr. 24: 815–820.
Li, Y., M. Horsman, B. Wang, N. Wu, and C.Q. Lan, 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629–636.
Li, Y.T., D.X. Han, M.T. Sommerfeld, and Q. Hu, 2011. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp.(Chlorophyceae) under nitrogen-limited conditions.. Bioresour.Technol. 102:123–129.
Liu, Z.Y., G.C. Wang, and B.C. Zhou, 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology 99: 4717–4722.
Lv, J.M., L.H. Cheng, X.H. Xub, L. Zhang, and H.L. Chen, 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology 101: 6797–6804.
Lynn, S.G., S.S. Kilham, D.A. Kreeger, and S.J. Interlandi, 2000. Effect of nutrient availability on the biochemical and elemental stoichiometry in freshwater diatom Stephanodiscus minutulus acillariophyceae. J. Phycol., 510–522.
Mache, R. and S. Loiseaux, 1973. Light saturation of growth and photosynthesis of the shade plant marchantia polymorpha. Jounal of Cell Science, 12: 391-401.
Masojidek, J., S. Papacek, M. Sergejevova, V. Jirka, J. Cerveny, J. Kunc, J. Korecko, O. Verbovikova, J. Kopecky, D. Stys, and G. Torzillo, 2003. A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15:239–248.
Mendes, R.L., Nobre, B.P., Cardoso, M.T., Pereira, A.P., and Palavra,. A.F., 2003. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta 356:328-334.
Metting, F.B., 1996. Biodiversity and application of microalgae, J. Ind. Microbiol. Biotechnol. 17: 477–489.
Miao, X. and Q. Wu, 2006. Biodiesel production from heterotrophic microalgal oil, Bioresour. Technol. 97 :841–846.
Milne, T.A., R.J. Evans, and N. Nagle, 1990. Catalytic Conversion of Microalgae and Vegetable Oils to Premium Gasoline, with Shapeselective Zeolites. Biomass, 21,219.
Minowa, T., S.Y. Yokoyama, M. Kishimoto, and T. Okakurat, 1995. Oil Production from Algal Cells of Dunaliella tertiolecta by Direct Thermochemical Liquefaction. Fuel, 74,1735.
Masojidek, J., J. Kopecky, M. Koblizek, and G. Torzillo, 2004.The xanthophyll cycle in green algae (Chlorophyta): its role in the photosynthetic apparatus. Plant Biol. 6:342–349.
Ohlrogge, J. and J. Browsef,1995. Lipid biosynthesis. Plant Cell, 7: 957–970.
Pal, D., K.G. Inna, Z. Zvi Cohen, and S. Boussiba, 2011. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441.
Pick, U., and M. Weiss, 1991. Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga Dunaliella saline. Plant Physiology 97, 1234–1240.
Raja, R., S. Hemaiswarya, N.A. Kumar, S. Sridhar, and R. Rengasamy, 2008. A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology. 34(2):77–88.
Rao, A.R., C. Dayananda, R. Sarada, T.R. Shamala, and G.A. Ravishankar, 2007. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour. Technol. 98,560–564.
Reitan, K.I., J.R. Rainuzzo, and Y. Olsen, 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 30: 972–979.
Renaud, S., D.L. Parry, Thinh, C. Kuo, A. Padovan, and N. Sammy, 1991. Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp., and Nannochloropsis oculata for use in tropical aquaculture. J Appl Phycol 3:43–53.
Renaud, S.M., and D.L. Parry, 1994. Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356.
Riebesell, U., A.T. Revill, D.G. Holdsworth, and J.K. Volkman, 2000. The Effects of Varying CO2 Concentration on Lipid Composition and Carbon Isotope Fractionation in Emiliania huxleyi, Geochim. Cosmochim. Acta, 64 (24), 4179.
Rippka, R., J. Deruelles, J. Waterbury, M. Herdman and R. Stanier, 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.
Robert, Z., and S. Yoshikatsu, 2004. Expedient Soxhlet extraction of resorcinolic lipids from wheat grains. Journal of Food Composition and Analysis 17: 649–663.
Roessler, P.G., 1988. Effects of silicon deficiency on lipid composition and metabolism in the diatom cyclotella cryptica. J. Phycol. 24: 394-400.
Rosenberg, J.N., G.A. Oyler, L. Wilkinson, and M.J. Betenbaugh, 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology. 19(5):430–6.
Sakai, N., Y. Sakamoto, N. Kishimoto, M. Chihara, and I. Karube, 1995. Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Conversion and Management, 36: 693-696.
Sánchez Mirón, A., M.C. Cerón García, A. Contreras Gómez, F. García Camacho, E. Molina Grima, and Y. Chisti, Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors, Biochem. Eng. J. 16 : 287–297.
Scott, A.H., B. Smith, C. Nolan, J. Shay, and J. Kralovec, 2009. Safety and immunoenhancing effect of a Chlorella-derived dietary supplement in healthy adults undergoing influenza vaccination:randomized, double-blind, placebo-controlled trial. Canadian Medical Association Journal, 169 (2), 111-117.
Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler, 1998. A look back at the U.S. Department of Energy’s aquatic species program-biofuel from algae, National Renewable Energy Laboratory, DOE, Colorado.
Solovchenko, A.E., I. Khozin-Goldberg, S. Didi-Cohen, Z. Cohen, and M. N. Merzlyak, 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. J Appl Phycol 20:245–25.
Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert, 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87–96. Sukenik, A. and A. Livne, 1991. Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine Prymnesiophyte Isochrysis galbana. Plant Cell Physiology 32: 371–378.
Sukenik, A. and Y. Carmeli, 1990. Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. J Phycol 26:463–469.
Sukenik, A., O. Zamora, Y. Carmeli, 1993b. Biochemical quality of marine unicellular algae with emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117:313–326.
Sung K.D., J.S. Lee, C.S. Shin, S.C. Park, and M.J. Choih, 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technology. 68, 269-273.
Teoh, M.L., W.L Chu, H. Marchant, and S.M. Phang, 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology 16: 421–430.
Turcotte, G. and N. Kosaric, 1988. Biosynthesis of Lipids by Rhodosporidium toruloides ATCC 10788. J. Biotechnol., 8, 221.
Ueno, Y., N. Kurano, and S. Miyachi, 1998. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. Journal of Fermentation and Bioengineering 86(1):38–43.
Van den Hoek, C., D.G. Mann, and H.M. Jahns, 1995. Algae: An Introduction to Phycology. Cambridge, UK: Cambridge University Press.
Widjaja, A., C.C. Chien, and Y.H. Ju, 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers 40: 13–2.
Yoo, C., S.Y. Jun, J.Y. Lee, C.Y. Ahn, and H.M.Oh, 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 101:S71–S74.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔