(3.238.249.17) 您好!臺灣時間:2021/04/14 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許文權
研究生(外文):Wen Chiuan Hsu
論文名稱:均勻電場半導體結構之模擬 及其調制光譜Franz-Keldysh 振盪之研究
論文名稱(外文):Simulation of Semiconductor Structures with Uniform Electric Field and Study of Franz-Keldysh Oscillations in Modulation Spectroscopy
指導教授:吳正信
指導教授(外文):Jenq-Shinn Wu
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:調制光譜模擬
外文關鍵詞:Modulation SpectroscopySimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含軟體模擬與實驗量測分析二部分。在模擬部分,我們使用APSYS軟體來分析砷化鎵p-i-n結構和表面電位結構,以期獲得近似均勻且夠強大的電場。模擬結果有助於最佳化半導體結構以便在調制光譜裡能顯現出高解析的FKOs (Franz-Keldysh oscillations)。而在實驗量測分析方面,利用電調制反射光譜(ER)的FKO訊號推算半導體中的電場,並據以得到金屬與砷化鎵接面的蕭特基能障高度(Schottky barrier height;SBH)。我們的實驗分析結果與一般文獻資料報告的SBH頗為吻合。
This thesis consists of both simulation and experimental characterization. For simulation, we use the APSYS software to analyze GaAs p-i-n and surface potential structures with the aim of achieving nearly uniform and strong enough electric fields. The simulation results help optimize the semiconductor structure so that the Franz-Keldysh oscillations (FKO) in modulation spectroscopy can be well resolved. As for the experimental part, we extract the value of the electric field within semiconductor from the electroreflectance (ER) FKO signal and then evaluate the Schottky barrier height of the metal-GaAs junction. Our results are consistent with the data published elsewhere.
目錄
中文摘要 i
Abstract ii
誌 謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 8
1-1 研究目的與動機 8
1-2 論文架構 9
第二章 均勻電場設計與模擬 10
2-1 模擬軟體簡介 10
2-2 p-i-n 結構 11
2-3 表面電位結構 14
第三章 光譜量測 17
3-1 調制光譜 17
3-1-1 電調制反射光譜量測系統 19
3-1-2 Franz-Keldysh 振盪 22
3-2 樣品結構 26
第四章 實驗分析與討論 28
4-1 光譜極值分析 30
4-2 光譜擬合 32
4-3 傅立葉轉換 36
4-4 蕭特基能障高度 41
第五章 結論 42
參考文獻 43
附錄 A 45
附錄 B 48
作者簡歷 52
[1] “Semiconductor TCAD Numerical Modeling and Simulation - Crosslight Software,” http://www.crosslight.com, 2007.
[2] B. O. Seraphin and N. Bottka, “Band-Structure Analysis from Electro-Reflectance Studies,” J. Appl. Phys. vol. 145, pp. 628-636, May 1966.
[3] C. Van Hoof, K. Deneffe, J. DeBoeck, D. J. Arent, and G. Borghs, “Franz-Keldysh oscillations originating from a well-controlled electric field in the GaAs depletion region,” Appl. Phys. Lett., vol. 54, pp. 608-610, February 1989.
[4] H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, “New normalization procedure for modulation spectroscopy,” Rev. Sci. Intrum. vol. 58, pp. 1429, 1987.
[5] F. Bassni and G. P. Parravicini, Electric State and Optical Transition Solid. America Press, 1975.
[6] M. Cardona, Modulation Spectroscopy. New York, 1969.
[7] H. Shen and M. Dutta, “Franz-Keldysh oscillations in modulation spectroscopy,” J. Appl. Phys. vol. 78, pp. 2151-2176, 1995.
[8] F. H. Pollak and H. Shen, “Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices,” Mater. Sci. Eng., R10, pp. 275-374, 1993.
[9] M. Balkanski, Handbook for Semiconductors. North-Holland, New York, 1994.
[10] D. G. Seiler and C. L. Littler, Semiconductors and Semimetals. New York, 1992.
[11] 高振家,“P-I-N太陽能電池之光電特性研究”,碩士論文,國立彰化師範大學電子工程學系,July 2013.
[12] 王冠貴,“由光調制反射光譜研究 s-i-n+砷化鎵的E0+Δ0躍遷與溫度關係”,碩士論文,國立中山大學物理研究所,June 2003.
[13] T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu, and C. P. Lee, “Franz-Keldysh oscillations of δ-doped GaAs,” J. Appl. Phys. vol. 72, pp. 1065-1069, 1992.
[14] M. Sydor, J. R. Engholm, D. A. Dale, and T. J. Fergestad, “Surface and bulk modulation in photorenectance from undoped GaAs,” Phys. Rev. B, vol. 49, pp. 7306-7312, 1993.
[15] H. Shen and F. H. Pollak, “Generalized Franz-Keldysh theory of electromodulation,” Phys. Rev. B, vol. 42, pp. 7097-71002, 1990.
[16] D. E. Aspnes and A. A. Studna, “Schottky-Barrier Electroreflectance:Application to GaAs,” Phys. Rev. B, vol. 7, pp. 4605-4625, 1973.
[17] Peng Jin, S. H. Pan, and Ji Ben Liang, “Theoretical analysis and experimental study of Fourier transformation of Franz-Keldysh oscillations in GaAs,” J. Appl. Phys. vol. 88, pp. 6429-6435, 2000.
[18] X. Yin, HM. Chen, F. H. Pollak, Y. Chan, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Wood, “Photoreflectance study of surface photovoltage effects at (100) GaAs
surfaces / interfaces,” Appl. Phys. Lett., vol. 58, pp. 260-262, 1991.
[19] D. P. Wang and C. T. Chen, “Fast Fourier transform of photoreflectance spectroscopy of δ-doped GaAs,” Appl. Phys. Lett., vol. 67, pp. 2069-2071, 1995.
[20] D. P. Wang, K. R. Wang, K. F. Huang, T. C. Huang, and A. K. Chu, “Determination of built-in field by applying fast Fourier transform to the photoreflectance of surface-intrinsic n+-type doped GaAs ,” Appl. Phys. Lett., vol. 74, pp. 475-477, 1999.
[21] J. Tersoff, “Schottky Barrier Heights and the Continuum of Gap States,” Phys. Rev. Lett., vol. 52, pp. 465-468, 1983.
[22] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed., Claredon Press , Oxford, pp.70, 1988.
[23] M. H. Yuan, H. Z. Song, S. X. Jin, H. P. Wang, and Y. P. Qiao, “Effect of reverse-bias annealing and zero-bias annealing on a hydrogen-containing Au/(n-type GaAs) Schottky barrier,” Phys. Rev. B, vol. 48, pp. 989-994, 1993.
[24] A. K. Sinha et al., Solid State Electronics, Vol. 19, pp. 489-492, 1976.
[25] F. Xu, Zhangda Lin, D. M. Hill, and J. H. Weaver, “Temperature-dependent interface evolution for Ti/GaAs(100) and Cr/GaAs(100),” Phys. Rev. B, vol.36, pp. 6624-6630, 1987.
[26] Marko Sokolich, U.S. Patent 7 774 503, 1995.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔