跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳紫睎
論文名稱:Microtox與真骨魚類生物急毒性檢測之相關性試驗與經驗模式之建立
論文名稱(外文):Regressive determination of the relationship between Microtox and Acute-Bio-Toxic tests, to evolutes an empiricism model
指導教授:吳淑美吳淑美引用關係
指導教授(外文):Su-Mei Wu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:水生生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:102
語文別:中文
論文頁數:80
中文關鍵詞:Microtox魚類生物急毒性羅吉斯迴歸
外文關鍵詞:Microtoxfish acute toxicitylogistic regression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:748
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用Microtox○R水質毒性偵測儀與國內環檢所環境檢測法中之鯉魚及羅漢魚生物急毒性檢驗比較,檢測不同類型之單一毒性物質包括重金屬類、有機化學類及無機化學類,試圖探討兩者對這些毒性物質的毒性反應是否有相關性。利用兩者之毒性單位數據套入經驗模式,即套用Microtox○R水質毒性偵測儀所得螢光發光率數值預測硬骨魚類對毒性物質反應之死亡率。並修定不同劑量Microtox○R之螢光試劑,藉以降低實驗成本。實驗結果顯示三種不同物種暴露於不同濃度之毒性物質時,其死亡率及螢光發光率皆會呈現劑量反應且符合羅吉斯迴歸(Logistic Regression),推論兩種硬骨魚類與費希爾弧菌之間對毒性的反應存在有某種相關性。經實驗檢測結果顯示Microtox○R所測得之發光率帶入經驗模式,推估出鯉魚與羅漢魚對各類單一化學物質之半致死濃度之估值,與實測值之決定係數(R2)分別為0.8928與0.9663。進一步將之用於推估鯉魚對某廠區兩處之綜合廢水,所得R2為0.9714及0.9847,故使用本實驗所設計之經驗模式在尚不考慮水中其他會干擾費希爾弧菌螢光反應的毒性參數的情形下,可利用此模式推估魚類生物急毒性之LC50。最後檢測三者之毒理反應,發現三者的劑量對照半致死濃度曲線之EC50死亡趨勢切線之斜率(Hill slope)皆不同,因此建議不同來源之廢水皆須獨立建立一個經驗模式,或是未來我們將透過大通量之數據模組(data base)設計一套通用之關係模式。
The aims of the present study ere to investigate if the Microtox○R was fitted the acute toxicant test of bio-model (BAT) on water toxicity detection. The BAT has been released by the Environmental Analysis Laboratory (EPA) of Tawan, R.O.C. The test animals include Pseudorasbora parva and C. carpio carpio in the present study. The targets toxics include heavy metal (Cu, Zn and Cd)、organic compounds (phenol; methanal) and inorganic compounds (sodium hydroxide; ammonium hydroxide) We collected the experimental data from both test upon every test, and designed an empirical mode to predict the mortality rate of BAT. The results showed that the mortality rate of BAT and luminometer of Microtox○R percentage were fitted the Logistic Regression, we suggested the toxicology of BAT and Vibrio fischeri ( model species in Microtox○R) exists some correlation. The advanced experimental results also showed from the EC50 data of Microtox○R which could get an estimative level on the BAT of Pseudorasbora parva and C. carpio upon various toxic factors challenges, the R2 are 0.8928 and 0.9663, respectively. Further it has been used to estimate an unknown effluent, and result a R2 level is 0.9714 and 0.9847, respectively. Therefore, we suggested that the empirical models which could be to estimate BAT of fish from a transfer model of the Microtox○R data. Except some factors of effluents to interfere the luminometer of Vibrio fischeri . Finally, the toxicological responses of the three biological model were different response from their Hill slop (the EC50 curve of mortality trends tangent slope). Therefore, we will to get more data from the BAT and Microtox○Runder many effluents of Taiwan in the future, and then try to find a suitable model to fit wastewater from anywhere.
中文摘要 Ⅲ
Abstract Ⅳ
前言 1
生物急毒性檢測研究背景 1
二、 MICROTOX○R螢光偵測儀 2
(1)、MICROTOX○R毒性測試之原理 2
(2)、 MICROTOX○R毒性測試的應用範圍 3
(3)、 MICROTOX○R可檢測之毒性物質 4
三、比較MICROTOX○R水質毒性檢測與環檢署公告之生物急毒性檢測方法之優劣 5
四、重金屬對於環境生物之危害 7
五、有機及無機化學物質對環境生物之損傷 8
六、生物急毒性試驗的LC50與MICROTOX○R的EC50之相關模式應用: 經驗模式之起源 10
七、研究目標 12
材料與方法 13
一、實驗設計 13

實驗一、降低MICROTOX○R毒性測試成本之試驗 13
實驗二、硬骨魚類對重金屬、有機以及無機汙染物之生物急毒性試驗 13
實驗三、費希爾弧菌 (Vibrio fischeri)對重金屬、有機以及無機汙染物之毒性試驗 14
實驗四、相關性計算及經驗模型建立 14
實驗伍、經驗模型之驗證 15
二、預備實驗 15
三、正式實驗 17
實驗一、降低MICROTOX○R毒性測試成本之試驗 17
實驗二、羅漢魚與鯉魚對單一化學物質之生物急毒性試驗 18
實驗三、費希爾弧菌 (Vibrio fischeri)對單一化學物質之毒性試驗 20
1.配置100ppm酚標準品 (Phenol) 20
2.配置各不同毒性物質之初始濃度 20
3. MICROTOX○R之急毒性測試 21
實驗四、相關性計算及經驗模型建立羅漢魚、鯉魚以及費希爾弧菌對不同毒性物質之毒理反應 21
五、經驗模型建立 23

結果 23
一、降低MICROTOX○R毒性測試成本之試驗 23
二、魚類及MICROTOX○R暴露不同單一化學物質之半致死濃度 23
三、羅漢魚、鯉魚與費希爾弧菌對各毒性物質毒性反應機制 24
四、經驗模型建立 25
五、經驗模型驗證: 28
討論 30
總結 39
參考文獻: 40
圖表: 47
環檢局B904.13B與B902.13B之規定。
林昱翔 。2009。探討急性鎘暴露初期吳郭魚肝醣代謝之機制。國立嘉義大學水
生生物學系研究所碩士論文。
林哲昌。2008。高科技產業廢水水質特性分析及管制標準探討計畫。
王俊明。2011。 半導體廠廢水生物急毒性之研究。瑞晶電子股份有限公司-廠務
工程部。
王郁盛。2004。汽車排氣違規預測模型分析。朝陽科技大學環境工程與管理系
碩士論文。
吳先琪。2000。廢水微生物學。國立編譯館。第580-523頁。
莊博智,陳建民。2006。以生物及毒性試驗探討廢水處理廠廢水之急毒性。嘉
南藥理科技大學環境工程與科學系。
陳仁全。1994。工業廢水生物特性探討。,國立台灣大學環境工程學研究所碩
士論文。第38-68 頁。
陳重元,吳俊宗,陳啓祥。1995-1996。生物毒性試驗與放流水標準製定之應用
研究。國立交通大學。行政院環境保護署水質保護處。
陳俊能。1998。工業區廢水前處理管制策略探討。國立中興大學環境工程研究
所碩士論文。
陳健民,李孫榮,喻世青,陳證淵,沈義富,曾慶祥。1998。以五種水中生物
測試不同事業廢水之毒性。嘉南藥理學院環境工程衛生系,行政院國家科學
委員會專題研究計畫成果報告。計劃編號:NSC88-2621-B-041-004。
陳雨禪 。2009。矽藻土與投餵氯化鈉飼料對吳郭魚銅含量及誘導金屬硫蛋白表
現之影響。國立嘉義大學水生生物學系研究所碩士論文。
施如佳,陳石松,張美華,邱雅琦,陳怡如,鄭秋真。2006。台灣地區貝類重
金屬含量分析方法探討及資料建立。藥物食品檢驗局調查研究年報,第24期,
第325-344頁。
許國恩,朱敬平,鍾裕仁。2009。放流水生物毒性測試之回顧與評析。中興工
程季刊,第104期,第23-29頁。
許東鳴。2009。淡水河流域水文時空變異分析。國立中央大學水文與海洋科學
研究所碩士論文。
黃昭斌。1996。以微生物毒性試驗法評估工業廢水毒性之研究。國立中興大學
環境工程研究所碩士論文。第3-18 頁。
李季眉,張怡塘,姜昀先。1998。毒性減量-評估與管制。國立編譯館,第1-8
頁。
Avella, M., Bornancin, M., 1989. A new analysis of ammonia and sodium transport
through the gills of the freshwater rainbowtrout (Salmo gairdneri). J. Exp. Biol.
142, 155–175.
Asami, M., N. Suzuki, J. Nakanishi, 1996, Aquatic Toxicity Emission from Tokyo:
Wastewater Measured Using Marine Luminescent.
Azur Environmental, 1998. Microtox Acute Toxicity Test Guide. Users Manual. Carlsbad, USA.
Bacterium. Photobacterium Phosphoreum. Water Science and Technology,33(6),
pp. 121-128.
Bulich, A. A., 1986. Bioluminescence Assays in Toxicity Testing Using
Microorganisms. Process Biochem, 1, 57-74
Burden, V. M., Sandheinrich, M. B., 1998. Effects of lead on the growth and
d-aminolevulinic acid dehydratase activity of juvenile rainbow trout,
Oncorhynchus mykiss. Environ Pollut, 101: 285–289.
De Boeck, G., De Smet, H., Blust, R.,1995. The effect of sublethal level of copper on
oxygen consumption and ammonia excretion in the common carp, Cyprinus
carpio. Aquatical Toxicology, 32, 127-141.
De Boeck, G., Vlaeminck, A., Balm, P. H. M., Lock, R. A. C., De Wachter, B., Blust,
R.,2001. Morphological and metabolic changes in commom carp, Cyrpinus
carpio, during short-term copper exposure: interaction between Cu2+ and cortisol
elevation. Environmental toxicology and chemistry, 20, 374-381.
Di Toro, D.M., H.A. Allen, H.L. Bergman, J.S. Meyer, P.R. Paquin, R.S. Santore.,
2001. Biotic ligand model of the acute toxicity of metals. I. Technical basis.
Environ Toxicol Chem, 20:2383-2396.
De Boeck G., van der Ven K., Hattink J., Blust R., 2006. Swimming performance and
energy metabolism of rainbow trout, common carp and gibel carp respond
differently to sublethal copper exposure. Aquatic Toxicology, 80: 92–100
Eliasen, R., King, P. H., Linsley, R. K., 1991. Wastewater engineering treatment,
disposal, and reuse, 3rd Ed. McGraw-Hill Bool Co, pp. 101-105.
Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill:
dominant site of gas exchange, osmoregulation, acid base regulation, and
excretion of nitrogenouswaste. Physiol, Rev.85, 97–177.
Fulladosa, E., Claude, M. J., Isabel , V., 2005. Study on the toxicity of binary equitoxic mixtures of merals using the luminescent bacteria Vibrio fischeri as a biological target. Chemosphere,58: 51-57.
Gutierrez, M., Etxebarria J., Fuentes, L. De las., 2002. Evalution of wastewater
toxicity: comparative study between Microtox and activated sludge oxygen
uptake inhibition. Water research, 36: 919-924.
Ip, Y.K., Lim, C.B., Chew, S.F., Wilson, J.M., Randall, D.J., 2001b.
Partial amino acid catabolism leading to the formation of alanine in
Periophthalmodon schlosseri (mudskipper): a strategy that facilitates
the use of amino acids as an energy source during locomotory activity
on land. J. Exp. Biol., 204, 1615–1624.
Ip, Y.K., Chew, S.F., Randall, D.J., 2004a. Five tropical fishes, six
different strategies to defend against ammonia toxicity on land.Physiol. Biochem. Zool. 77, 768–782.
Ip, Y.K., Chew, S.F., Wilson, J.M., Randall, D.J., 2004b. Defences against ammonia
toxicity in tropical fishes exposed to high concentrations of environmental
ammonia: a review. J. Comp. Physiol., B 174, 565–575.
Julliard, A. K., Saucier, D., Astic, L., 1996. Time-course of apoptosis in the olfactory
pithelium of rainbow trout exposed to a low copper level. Tissue cell, 28,
367-377.
Klaus, L. E. K., 1991. Virginia S. Palabrica, Potobacterium phosphoreum Toxicity
Data Index. Water Poll. Res. J. Canada, Volume 26. NO.3, 361-431.
Kirkwood, A. E., Nalewajko, C., Fulthorpe, R. R., 2005. The impacts of
cyanobacteria on pulp-and paper wastewater toxicity and biodegradation of
wastewater contaminants. Can J Microbiol., 51(7): 531-540.
Kim, K. T., Lee, Y. G., Kim, S. D., 2006. Combined toxicity of copper and phenol
derivatives to Daphnia magna: Effect of complexation reaction. Environment International, 32: 487-492.
Kyungho, C., Peter, G. M., 2000. Toxicity Evaluation of Metal Plating Wastewater
Employing the Microtox Assay: A Comparison with Cladocerans and Fish.
Department of Environmental Health Sciences,136-141.
Laverne, C., Edward, E. L., Jimmie, D. P., B. Thomas J., Jon A. Lebo, Carl, E. O, Jane, D., Alan, C., 1997. Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity tests, Microtox, Mutatox and semipermeable membrane devices (SPMPs). Marine pollution bulletin,Vol.34,No.3,pp.194-202.
Liu, M. C., Chen, C. M., Cheng, H. Y., Chen, H. Y., Su, Y. C., Hung, T. Y., 2002.
Toxicity of Different Industrial Effluents in Taiwan: A Comparision of the
Sensitivity of Daphnia similis and Microtox. Environ Toxicol.
Lammer, E. , Carr, G.J., Wendler, K. , Rawlings, J.M., Belanger, S.E., Braunbeck,
Th., 2009. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio)
a potential alternative for the fish acute toxicity test? Comparative Biochemistry
and Physiology, Part C., 149, 196–209.
Gaspari, L., Cossu , R., Pivato , A., 2004, Acute ecotoxicological effects of ammonia.
University of Padua (Italy).35131:67-85
Libralato, G., Losso, C., Arizzi Novelli, A., Citron, M., Della Sala, S., Zanotto, E.,
Cepak, F., Volpi Ghiradini, A., 2008. Ecotoxicological evalution of industrial port
of Venice (Italy) sediment samples after a decontamination treaement. Environ.
Pollut, 156, 644-650.
Microbics Corp., 1998. Microtox Test Manual. Carlsbad, CA, USA.
Nriagu, J.L., Wong, H.K.T., Lawson, G., Daniel, P., 1998. Saturation of ecosystems
with toxic metals in Sudbury basin,Ontario. Canada. The Science of the total
environment, 233,99-117.
Motilsky, H., Christopolos, A., 2003. Fitting models to biological data using linear
and nonlinear regession.15-351.
Mamindy-Pajany, Y., Florence, G., Roméo, M., Charlotte, H., Nicolas, M., 2012. Ex
situ remediation of contaminated sediments using mineral additives: Assessment
of pollutant bioavailability with the Microtox solid phase test. Chemosphere ,
1112–1116.
Bogaerts, P., Bohatier, J., Bonnemoy, F., 2001. Use of the Ciliated Protozoan
Tetrahymena pyriformis for the Assessment of Toxicity and Quantitative
Structure+Activity Relationships of Xenobiotics: Comparison with the Microtox Test. Ecotoxicology and Environmental Safety, 49, 293-301.
PL, R.M., Palaniappan, N., Krishnakumar, M., Vadivelu, 2009. Bioaccumulation of
lead and the influence of chelating agents in Catla catla fingerlings. Environ
Chem Lett., 7:51–54.
Randall, D.J., Wright, P.A., 1989. The interaction between carbon dioxide and ammonia excretion and water pH in fish. Can. J.Zool. 67, 2936–2942.
Randall, D. J., Ip, Y.K., 2006. Ammonia as a respiratory gas in water and air-breathing fishes., Respiratory Physiology &; Neurobiology, 154:216–225.
Sorensen, E. M., 1991.Cadmium. In Metal Poisoning in fish. Boston. CRC
Press, 175-234.
Soengas, J. L., Agra-Lago, M. J., Carballo, B., Andres, M. D., Vieira, J. A. R., 1996.
Effect of an acute exposure to sublethal concentration of cadmium on liver
carbohydrate metabolism of Atlantic salmon (Salmon salar). Bulletin of
Environmental Contamination and Toxicology, 57,625-631.
Verbost, P. M., Flik, G., Lock, A. C., Bonga, S. E. W., 1987. Cadmium inhibition of
Ca2+ uptake in rainbow trout gills. American Journal Physiology, 253,213-221.
Verbost, P. M., Roij, J. V., Flik, G., Lock, R. A. C., Wendelaar Bonga, S. E.,1989.
The movement of cadmium through freshwater trout branchial epithelium and its
interference with calcium transport. Journal of Experimental Biology, 145, 185-197.
Wilkie, M.P., 1997. Mechanisms of ammonia excretion across fish gills. Comp.
Biochem. Physiol., 118, 39–50.
Wilkie, M.P., 2002. Ammonia excretion and urea handling by fish gills: present
understanding and future research challenges. J. Exp. Zool., 293, 284–301.
Wedekind, C., Siebenthal, B., Gingold, R., 2007. The weaker points of acute toxicity
tests and how tests on embryos can solve some issues. Environmental Pollution,
148,385-389.
Zikic, R. V., Stajn, A. S., Pavlovic, S., Ognjanovic, B. I., Saicic, z. s., 2001.Activities of superoxide dismutase and catalase in erythrocytes and plasma transminases of goldfish exposed to cadmium. Physiological Research, 50, 105-111.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top