跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 17:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李岱靜
論文名稱:環境因子對養殖池水及底泥中安莫西林和安比西林轉化的影響
論文名稱(外文):The Effect of Environmental Factors on Transformations of Amoxicillin and Ampicillin in Aquaculture Pond Waters and Sediments
指導教授:賴弘智賴弘智引用關係謝佳雯謝佳雯引用關係
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:水生生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:102
語文別:中文
論文頁數:129
中文關鍵詞:安莫西林安比西林光照微生物活動轉化PCR-DGGE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對 amoxicillin (AMO) 及 ampicillin (AMP) 兩種水產養殖業的合法用藥,模擬實際養殖環境,檢測養殖鯉魚投餵AMO 及 AMP的投藥期間與停藥後,淡水池水和底泥中AMO 及 AMP殘留情況及底泥菌相變化情形。另外,以人為添加抗生素於淡水與海水養殖池池水與泥漿中,模擬光照 (黑暗與自然光照)、微生物活動 (滅菌與未滅菌)、氧氣條件 (有氧及厭氧) 等環境因子對其轉化的影響。並於有氧及厭氧泥漿中重複添加抗生素,研究其在泥漿中的宿命,並以 PCR-DGGE 分析經抗生素重複汙染後,泥漿中的菌相變化。
結果指出,AMO 和 AMP投餵鯉魚 (Cyprinus carpio) 期間,養殖池水和底泥中 AMO 的殘留濃度介於 2.7~3.5 mg L-1,AMP 介於2.2~3.0 mg L-1,兩種抗生素於停藥後第 1 天即低於檢測極限。AMO 和 AMP 於淡水與海水養殖環境中皆會受到自然光照影響而加快轉化。兩種抗生素初始濃度為 25 mg L-1,在自然光照情形下,滅菌處理後的池水中之半衰期 (t1/2) 為 2.81~3.12 天,底泥為 2.70~3.01 天,分別顯著比黑暗下快 (4.66~10.67 天及 2.93~5.58 天)。微生物活動也在兩種抗生素的轉化過程中有重要的影響。兩種抗生素在未滅菌且黑暗的池水中之 t1/2 分別為 1.02~3.31 天,底泥為 2.74~3.20 天,顯著比滅菌組別快 (4.66~10.67 天及 2.93~5.58 天),此外,自然光照加上未滅菌處理時,AMO 與 AMP 皆得到最快的轉化速度 (t1/2, 0.91~1.17 天與 0.80~1.00 天)。兩種抗生素於黑暗下的池水及泥漿中,有氧狀態下的之 t1/2 (0.55~12.83 天) 皆比厭氧狀態來的快 (1.30~14.08 天)。泥漿重複添加AMO 和 AMP結果發現,除了有氧狀態的淡水泥漿重複添加後轉化速度顯著慢於初次添加外,其它處理組別 t1/2 皆比初次添加之轉化速度快 1.2~3.2 倍。分析重複添加實驗期間泥漿中菌群結構,發現有氧狀態下的淡水泥漿菌群結構無明顯改變,而在厭氧狀態淡水泥漿、有氧及厭氧狀態海水泥漿中重複添加抗生素後菌群結構則產生改變,有耐受性細菌出現,其中 Pseudomonas 菌屬在各處理組別的泥漿中皆存在,在厭氧狀態淡水泥漿中隨著重複添加後抗生素濃度下降,此菌 DNA 量逐漸增加,鯉魚養殖實驗期間之底泥菌群在投藥期間與停藥 1 天後亦發現有 Pseudomonas 的存在。
Amoxicillin (AMO) and ampicillin (AMP) are legally antibiotics for use in aquaculture of Taiwan. This study investigates the concentrations of AMO and AMP in aquaculture pond water and sediment during an oral administration and a withdrawal period. Furthermore, the effects of illumination (dark and natural light), microbial activities (sterile, non-sterile) and oxygen levels (aerobic and anaerobic) on the fate of AMO and AMP in the waters and sediment slurries were also investigated. The bacterial diversities of sediment slurries were studied by PCR-DGGE.
The results showed that the concentrations were 2.7—3.5 mg L-1 for AMO and 2.2—3.0 mg L-1 for AMP and in the water and sediment slurries during the period of oral administration, and were undetectable at the first day of withdrawal. Natural light enhanced transformations of the two antibiotics in the sterilized waters and sediment slurries and the half-lives (t1/2) were 2.81—3.12 d and 2.70—3.01 d, respectively, and significantly faster than results under dark, 4.66—10.67 d and 2.93—5.58 d. Microbial activities were found effective on transformation of two antibiotics and the half-lives (t1/2) of both antibiotics were 1.02—3.31 d and 2.74—3.20 d in the non-sterile water and sediment slurries, respectively. The transformation processes of two antibiotics were also enhanced by microbial activities under the light (t1/2, 0.91—1.17 d and 0.80—1.00 d). Furthermore, the transformations of AMO and AMP were faster in the aerobic (t1/2, 0.55—12.83 d) than in the anaerobic (t1/2, 1.30—14.08 d) conditions in the waters and sediment slurries. The re-addition experiments showed that the t1/2 of the two antibiotics became 1.2—3.2 times faster in the second addition than the first addition except the freshwater sediment slurries in aerobic conditions. An analysis of bacterial diversity in the sediment slurries in the re-addition experiments showed that bacterial diversity structures were changed except the freshwater sediment slurries in aerobic treatment. Antibiotic resistant bacteria occured when the second addition. The DNA concentration of Pseudomonas sp. were enhanced when two antibiotics re-addition the freshwater sediment slurries in anarobic treatment. Pseudomonas sp. found in all transformation treatments and also found in the sediment slurries of oral administration.
中文摘要 I
Abstract III
誌 謝 V
目 錄 VI
圖索引 X
表索引 XII
第一章 前言 1
1.1 緒言 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 抗生素於水環境流佈及影響 4
2.2 AMO 和 AMP 簡介 5
2.3 AMO 和 AMP 的抑菌機制 7
2.4 AMO 與 AMP 於水產養殖的應用及生物利用率 8
2.5 AMO 與 AMP 在水環境中的殘留 9
2.6 AMO 與 AMP 在水環境中的風險評估 11
2.7 AMO 與 AMP 在環境中受水解、光照及微生物的影響 12
2.8 變性梯度凝膠電泳簡介 14
2.9 變性梯度凝膠電泳於環境上的應用 15
第三章 材料與方法 16
3.1 實驗架構 16
3.1.1 鯉魚養殖實驗 17
3.1.2 環境因子對抗生素轉化影響實驗之初始濃度設計 17
3.1.3 光照處理 18
3.1.4 微生物活動 18
3.1.4.1 AMO 及 AMP 的生物性轉化作用 19
3.1.4.2 好氧性與厭氧性微生物 19
3.1.4.3 重複添加試驗 19
3.1.4.4 泥漿中菌相變化 20
3.2 實驗方法 20
3.2.1 樣品採集與處理 20
3.2.2 鯉魚養殖實驗 21
3.2.3 光照實驗 22
3.2.4 微生物活動實驗 23
3.2.5 有氧及厭氧條件實驗 23
3.2.6 重複添加實驗 23
3.2.7 泥漿中菌相變化實驗 24
3.2.8 藥品與儀器 24
3.2.8.1 實驗藥品 24
3.2.8.2 儀器設備 26
3.2.9 溶液配製 27
3.2.9.1 儲備溶液 27
3.2.9.2 TBE buffer 27
3.2.9.3 TAE buffer 27
3.2.10 分析方法 28
3.2.10.1 AMO 與 AMP 之吸附平衡 28
3.2.10.2 標準檢量線 28
3.2.10.3 HPLC 分析條件 29
3.2.10.4 池水及泥漿樣品分析 29
3.2.10.5 泥漿中菌相分析 29
3.2.10.5.1 DNA 萃取 29
3.2.10.5.2 聚合酶連鎖反應 (Polymerase Chain Reaction,PCR) 30
3.2.10.5.3 瓊脂膠體電泳 (Agarose Gel Electrophoresis) 31
3.2.10.5.4 變性梯度凝膠電泳 (Denaturing Gradient Gel Electrophoresis,DGGE) 31
3.2.10.5.5 定序 32
3.3 數據處理 32
3.4 計算最低檢測極限與最低定量極限 33
3.5 吸附率計算 33
3.6 統計分析 34
第四章 結果 35
4.1 AMO 及 AMP 的檢測極限與泥漿中吸附平衡實驗 35
4.2 投藥期間池水及底泥中 AMO 和 AMP濃度變化 35
4.2.1 AMO 35
4.2.2 AMP 36
4.3 投藥期間 AMO 和 AMP 的轉化產物變化情形 36
4.4 投藥期間底泥中菌相變化 38
4.5 自然光照對池水或泥漿中 AMO 及 AMP 轉化影響 39
4.5.1 淡水養殖環境 39
4.5.1.1 淡水池水 39
4.5.1.2 淡水泥漿 40
4.5.2 海水養殖環境 40
4.5.2.1 海水池水 40
4.5.2.2 海水泥漿 41
4.6 微生物活動對池水或泥漿中 AMO 及 AMP 轉化影響 42
4.6.1 滅菌與未滅菌處理 42
4.6.1.1 淡水養殖環境 42
4.6.1.1.1 淡水池水 42
4.6.1.1.2 淡水泥漿 43
4.6.1.2 海水養殖環境 43
4.6.1.2.1 海水池水 43
4.6.1.2.2 海水泥漿 44
4.6.2 光照與微生物對池水與泥漿中 AMO 與 AMP 轉化的共同作用 44
4.6.3 有氧與厭氧處理 45
4.6.3.1 淡水池水 46
4.6.3.1.1 AMO 46
4.6.3.1.2 AMP 46
4.6.3.2 海水池水 46
4.6.3.2.1 AMO 46
4.6.3.2.2 AMP 47
4.6.3.3 淡水泥漿 47
4.6.3.3.1 AMO 47
4.6.3.3.2 AMP 48
4.6.3.4 海水泥漿 48
4.6.3.4.1 AMO 48
4.6.3.4.2 AMP 49
4.6.4 重複添加處理 49
4.6.4.1 淡水泥漿 50
4.6.4.2 海水泥漿 51
4.6.5 泥漿中菌群結構變化 52
4.6.5.1 淡水泥漿 52
4.6.5.1.1 有氧狀態 52
4.6.5.1.2 厭氧狀態 53
4.6.5.2 海水泥漿 54
4.6.5.2.1 有氧狀態 54
4.6.5.2.2 厭氧狀態 55
第五章 討論 58
5.1 投餵 AMO 和 AMP 後其抗生素在養殖環境中的濃度變化 58
5.2 投藥期間 AMO 和 AMP 的轉化產物 59
5.3 投藥期間底泥菌相變化 60
5.4 AMO 和 AMP 在養殖池水及泥漿中的水解 61
5.5 自然光照對 AMO 和 AMP 轉化的影響 62
5.6 微生物活動對 AMO 和 AMP 轉化的影響 63
5.7 光照與微生物對池水與泥漿中 AMO 與 AMP 轉化的共同作用 65
5.8 有氧及厭氧狀態對 AMO 和 AMP 轉化的影響 66
5.9 有氧及厭氧狀態泥漿中重複添加 AMO 和 AMP 轉化的影響 67
5.10 重複添加實驗之泥漿中菌群結構變化 67
5.11 討論總結 73
第六章 結論 75
參考文獻 76
Aki, H., Ikeda, H., Yukawa, M., Iwase, Y., Mibu, N., 2009. Effect of pH on the formation of inclusion complexes between β-lactam antibiotics and 2-hydroxypropyl-β-cyclodextrin in aqueous solution. Journal of Thermal Analysis and Calorimetry. 95, 421-426.
Akinbowale, O.L., Peng, H., Grant, P., Barton, M.D., 2007. Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. International Journal of Antimicrobial Agents. 30, 177-182.
Al-Bahry, S.N., Al-Zadjali, M.A., Mahmoud, I.Y., Elshafie, A.E., 2012. Biomonitoring marine habitats in reference to antibiotic resistant bacteria and ampicillin resistance determinants from oviductal fluid of the nesting green sea turtle, Chelonia mydas. Chemosphere. 87, 1308-1315.
Alderman, D.J., Michel, C., 1992. Chemotherapy in Aquaculture: From Theory to Reality. in: Alderman, D.J., Michel, C. (Eds.), Chemotherapy in aquaculture today. Office International Des Epizooties, Paris, France, 3-24.
Allwood, M.C., Brown, P.W., 1993. Stability of ampicillin infusions in unbuffered and buffered saline. International Journal of Pharmaceutics. 97, 219-222.
Altinok, I., Kayis, S., Capkin, E., 2006. Pseudomonas putida infection in rainbow trout. Aquaculture. 261, 850-855.
Andreozzi, R., Raffaele, M., Nicklas, P., 2003. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere. 50, 1319-1330.
Andreozzi, R., Caprio, V., Ciniglia, C., de Champdore, M., Lo Giudice, R., Marotta, R., Zuccato, E., 2004. Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environmental science &; technology. 38, 6832-6838.
Ashnagar, A., Naseri, N.G., 2007. Analysis of Three Penicillin Antibiotics (Ampicillin, Amoxicillin and Cloxacillin) of Several Iranian Pharmaceutical Companies by HPLC. E-Journal of Chemistry. 4, 536-545.
Bailón-Pérez, M.I., García-Campaña, A.M., Cruces-Blanco, C., del Olmo Iruela, M., 2008. Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. Journal of Chromatography A. 1185, 273-280.
Batchu, S.R., Panditi, V.R., O'Shea, K.E., Gardinali, P.R., 2014. Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate. Science of The Total Environment. 470–471, 299-310.
Batt, A.L., Snow, D.D., Aga, D.S., 2006. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA. Chemosphere. 64, 1963-1971.
Beausse, J., 2004. Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. TrAC Trends in Analytical Chemistry. 23, 753-761.
Beckman, W., Lessie, T.G., 1979. Response of Pseudomonas cepacia to beta-Lactam antibiotics: utilization of penicillin G as the carbon source. Journal of bacteriology. 140, 1126-1128.
Bonfiglio, G., Laksai, Y., Franchino, L., Amicosante, G., Nicoletti, G., 1998. Mechanisms of beta-lactam resistance amongst Pseudomonas aeruginosa isolated in an Italian survey. The Journal of antimicrobial chemotherapy. 42, 697-702.
Boxall, A.B.A., Blackwell, P., Cavallo, R., Kay, P., Tolls, J., 2002. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters. 131, 19-28.
Bruggink, A., 2001. Sythesis of beta lactam antibiotics. Kluwer Academic, The Netherlands.
Bruggink, A., Roos, E.C., de Vroom, E., 1998. Penicillin Acylase in the Industrial Production of β-Lactam Antibiotics. Organic Process Research &; Development. 2, 128-133.
Bu, Q., Wang, B., Huang, J., Deng, S., Yu, G., 2013. Pharmaceuticals and personal care products in the aquatic environment in China: A review. Journal of Hazardous Materials. 262, 189-211.
Burridge, L., Weis, J.S., Cabello, F., Pizarro, J., Bostick, K., 2010. Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture. 306, 7-23.
Capleton, A.C., Courage, C., Rumsby, P., Holmes, P., Stutt, E., Boxall, A.B.A., Levy, L.S., 2006. Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile. Toxicology Letters. 163, 213-223.
Capone, D.G., Weston, D.P., Miller, V., Shoemaker, C., 1996. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture. 145, 55-75.
Catalán, A., Espoz, M.C., Cortés, W., Sagua, H., González, J., Araya, J.E., 2010. Tetracycline and penicillin resistant Clostridium perfringens isolated from the fangs and venom glands of Loxosceles laeta: Its implications in loxoscelism treatment. Toxicon. 56, 890-896.
Cha, J.M., Yang, S., Carlson, K.H., 2006. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. Journal of Chromatography A. 1115, 46-57.
Chen, Y., Succi, J., Tenover, F.C., Koehler, T.M., 2003. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. Journal of bacteriology. 185, 823-830.
Cravedi, J.P., Choubert, G., Delous, G., 1987. Digestibility of chloramphenicol, oxolinic acid and oxytetracycline in rainbow trout and influence of these antibiotics on lipid digestibility. Aquaculture. 60, 133-141.
Davies, J., 1999. Millennium bugs. Trends in Biochemical Sciences. 24, M2-M5.
de Souza, S.M.L., de Vasconcelos, E.C., Dziedzic, M., de Oliveira, C.M.R., 2009. Environmental risk assessment of antibiotics: An intensive care unit analysis. Chemosphere. 77, 962-967.
della Rocca, G., Zaghini, A., Zanoni, R., Sanguinetti, V., Zanchetta, S., Di Salvo, A., Malvisi, J., 2004. Seabream (Sparus aurata L.): disposition of amoxicillin after single intravenous or oral administration and multiple dose depletion studies. Aquaculture. 232, 1-10.
Dingfei, H., Keri, L.D.H., Joel, R.C., 2009. Environmental fate and chemistry of a veterinary antibiotic-tylosin, Veterinary Pharmaceuticals in the Environment. American Chemical Society, 93-104.
Doretto, K.M., Rath, S., 2013. Sorption of sulfadiazine on Brazilian soils. Chemosphere. 90, 2027-2034.
Elmolla, E.S., Chaudhuri, M., 2009. Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. Journal of Hazardous Materials. 172, 1476-1481.
Elmolla, E.S., Chaudhuri, M., 2010. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. Journal of Hazardous Materials. 173, 445-449.
Ferreira, A.L.O., Giordano, R.L.C., Giordano, R.C., 2007. Nonconventional Reactor for Enzymatic Synthesis of Semi-Synthetic β-Lactam Antibiotics. Industrial &; Engineering Chemistry Research. 46, 7695-7702.
Fischer, S.G., Lerman, L.S., 1979. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell. 16, 191-200.
Fobbe, R., Kuhlmann, B., Nolte, J., Preuß, G., Skark, C., Zullei-Seibert, N., 2006. Polar Herbicides and Metabolites. Wiley-VCH Verlag GmbH &; Co. KGaA.
Frau, J., Coll, M., Donoso, J., Muñoz, F., Vilanova, B., García-Blanco, F., 1997. Alkaline and acidic hydrolysis of the β-lactam ring. Electronic Journal of Theoretical Chemistry. 2, 56-65.
Fuentes, D.E., Navarro, C.A., Tantaleán, J.C., Araya, M.A., Saavedra, C.P., Pérez, J.M., Calderón, I.L., Youderian, P.A., Mora, G.C., Vásquez, C.C., 2005. The product of the qacC gene of Staphylococcus epidermidis CH mediates resistance to β-lactam antibiotics in Gram-positive and Gram-negative bacteria. Research in Microbiology. 156, 472-477.
Gozlan, I., Rotstein, A., Avisar, D., 2013. Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment. Chemosphere. 91, 985-992.
Homem, V., Alves, A., Santos, L., 2010. Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments. Science of The Total Environment. 408, 6272-6280.
Hu, Q., Dou, M.N., Qi, H.Y., Xie, X.M., Zhuang, G.Q., Yang, M., 2007. Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE. Journal of environmental sciences (China). 19, 1114-1119.
Hubschwerlen, C., 2007. β-Lactam Antibiotics. in: Taylor, J.B., Triggle, D.J. (Eds.), Comprehensive Medicinal Chemistry II. Elsevier, Oxford, 479-518.
Inglis, V., Palmer, R., Shatwell, J.P., Branson, E.J., Richards, R.H., 1993. Amoxicillin concentrations in the serum of Atlantic salmon (Salmo salar L) during furunculosis therapy. The Veterinary record. 133, 617-621.
Itoi, S., Niki, A., Sugita, H., 2006. Changes in microbial communities associated with the conditioning of filter material in recirculating aquaculture systems of the pufferfish Takifugu rubripes. Aquaculture. 256, 287-295.
Jiang, M., Wang, L., Ji, R., 2010. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. Chemosphere. 80, 1399-1405.
Jung, Y.J., Kim, W.G., Yoon, Y., Kang, J.-W., Hong, Y.M., Kim, H.W., 2012. Removal of amoxicillin by UV and UV/H2O2 processes. Science of The Total Environment. 420, 160-167.
Kakimoto, T., Funamizu, N., 2007. Factors affecting the degradation of amoxicillin in composting toilet. Chemosphere. 66, 2219-2224.
Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2007. Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. Journal of Chromatography A. 1161, 132-145.
Kerry, J., Coyne, R., Gilroy, D., Hiney, M., Smith, P., 1996. Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy. Aquaculture. 145, 31-39.
Kim, Y., Lim, S., Han, M., Cho, J., 2012. Sorption characteristics of oxytetracycline, amoxicillin, and sulfathiazole in two different soil types. Geoderma. 185–186, 97-101.
Kong, K.F., Aguila, A., Schneper, L., Mathee, K., 2010. Pseudomonas aeruginosa beta-lactamase induction requires two permeases, AmpG and AmpP. BMC microbiology. 10, 328.
Kummerer, K., Henninger, A., 2003. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 9, 1203-1214.
Kwon, S.R., Nam, Y.K., Kim, S.K., Kim, K.H., 2006. Protection of tilapia (Oreochromis mosambicus) from edwardsiellosis by vaccination with Edwardsiella tarda ghosts. Fish &; shellfish immunology. 20, 621-626.
Lai, H.-T., Hou, J.-H., 2008. Light and microbial effects on the transformation of four sulfonamides in eel pond water and sediment. Aquaculture. 283, 50-55.
Lai, H.-T., Wang, T.-S., Chou, C.-C., 2011. Implication of light sources and microbial activities on degradation of sulfonamides in water and sediment from a marine shrimp pond. Bioresource Technology. 102, 5017-5023.
Lalitha, M.K., Thomas, M.K., 1997. Penicillin resistance in Bacillus anthracis. Lancet. 349, 1522.
Lalumera, G.M., Calamari, D., Galli, P., Castiglioni, S., Crosa, G., Fanelli, R., 2004. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere. 54, 661-668.
Längin, A., Alexy, R., König, A., Kümmerer, K., 2009. Deactivation and transformation products in biodegradability testing of ß-lactams amoxicillin and piperacillin. Chemosphere. 75, 347-354.
Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K.M., Wertheim, H.F.L., Sumpradit, N., Vlieghe, E., Hara, G.L., Gould, I.M., Goossens, H., Greko, C., So, A.D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A.Q., Qamar, F.N., Mir, F., Kariuki, S., Bhutta, Z.A., Coates, A., Bergstrom, R., Wright, G.D., Brown, E.D., Cars, O., 2013. Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases. 13, 1057-1098.
Le, T.X., Munekage, Y., 2004. Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam. Marine Pollution Bulletin. 49, 922-929.
Lin, A.Y.-C., Tsai, Y.-T., 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment. 407, 3793-3802.
Lin, J., Chen, J., Cai, X., Qiao, X., Huang, L., Wang, D., Wang, Z., 2007. Evolution of toxicity upon hydrolysis of fenoxaprop-p-ethyl. Journal of agricultural and food chemistry. 55, 7626-7629.
Lister, P.D., 2000. Beta-lactamase inhibitor combinations with extended-spectrum penicillins: factors influencing antibacterial activity against enterobacteriaceae and Pseudomonas aeruginosa. Pharmacotherapy. 20, 213S-218S; discussion 224S-228S.
Maki, T., Hasegawa, H., Kitami, H., Fumoto, K., Munekage, Y., Ueda, K., 2006. Bacterial degradation of antibiotic residues in marine fish farm sediments of Uranouchi Bay and phylogenetic analysis of antibiotic-degrading bacteria using 16S rDNA sequences. Fisheries Science. 72, 811-820.
Manageiro, V., Ferreira, E., Caniça, M., Manaia, C.M., 2014. GES-5 among the β-lactamases detected in ubiquitous bacteria isolated from aquatic environment samples. FEMS Microbiology Letters. 351, 64-69.
McPhearson, R.M., DePaola, A., Zywno, S.R., Motes Jr, M.L., Guarino, A.M., 1991. Antibiotic resistance in Gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture. 99, 203-211.
Minh, T.B., Leung, H.W., Loi, I.H., Chan, W.H., So, M.K., Mao, J.Q., Choi, D., Lam, J.C.W., Zheng, G., Martin, M., Lee, J.H.W., Lam, P.K.S., Richardson, B.J., 2009. Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour. Marine Pollution Bulletin. 58, 1052-1062.
Mitchell, S.M., Ullman, J.L., Teel, A.L., Watts, R.J., 2014. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Science of The Total Environment. 466–467, 547-555.
Muyzer, G., de Waal, E.C., Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology. 59, 695-700.
Naas, T., Bellais, S., Nordmann, P., 2003. Molecular and biochemical characterization of a carbapenem-hydrolysing beta-lactamase from Flavobacterium johnsoniae. The Journal of antimicrobial chemotherapy. 51, 267-273.
Nagata, T., Saeki, M., 1986. Determination of ampicillin residues in fish tissues by liquid chromatography. Journal - Association of Official Analytical Chemists. 69, 448-450.
Oliveira, R., McDonough, S., Ladewig, J.C.L., Soares, A.M.V.M., Nogueira, A.J.A., Domingues, I., 2013. Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environmental Toxicology and Pharmacology. 36, 903-912.
Park, E.K., Jung, W.C., Lee, H.J., 2010. Application of a solid-phase fluorescence immunoassay to determine amoxicillin residues in fish tissue. Acta veterinaria Hungarica. 58, 83-89.
Poirel, L., Laurent, F., Naas, T., Labia, R., Boiron, P., Nordmann, P., 2001. Molecular and biochemical analysis of AST-1, a class A beta-lactamase from Nocardia asteroides sensu stricto. Antimicrobial agents and chemotherapy. 45, 878-882.
Quiroga, M., Lezcano, M.T., Martin Talavera, B., Caceres, M.G., Vergara, M., 2009. Beta-lactam resistance in variants of Aeromonas spp. selected in vitro under antibiotic pressure. Journal of chemotherapy (Florence, Italy). 21, 701-702.
Rico, A., Van den Brink, P.J., 2014. Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia. Science of The Total Environment. 468–469, 630-641.
Robinson-Fuentes, V.A., Jefferies, T.M., Branch, S.K., 1997. Degradation pathways of ampicillin in alkaline solutions. The Journal of pharmacy and pharmacology. 49, 843-851.
Rodgers, C.J., Furones, M.D., 2009. Antimicrobial agents in aquaculture: practice, needs and issues. The use of veterinary drugs and vaccines in Mediterranean aquaculture. 86, 41-59.
Sacher, F., Lange, F.T., Brauch, H.-J., Blankenhorn, I., 2001. Pharmaceuticals in groundwaters: Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of Chromatography A. 938, 199-210.
Samuelsen, O.B., Torsvik, V., Ervik, A., 1992. Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in a fish farm sediment after medication. Science of The Total Environment. 114, 25-36.
Sapkota, A., Sapkota, A.R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., Lawrence, R., 2008. Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International. 34, 1215-1226.
Sarmah, A.K., Meyer, M.T., Boxall, A.B.A., 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 65, 725-759.
Serrano, P.H., 2005. Responsible Use of Antibiotics in Aquaculture. FAO Fisheries Technical Paper. 496.
Subbiah, M., Mitchell, S.M., Ullman, J.L., Call, D.R., 2011. beta-Lactams and Florfenicol Antibiotics Remain Bioactive in Soils while Ciprofloxacin, Neomycin, and Tetracycline Are Neutralized▿. Applied and environmental microbiology. 77, 7255-7260.
Szarecka, A., Lesnock, K.R., Ramirez-Mondragon, C.A., Nicholas, H.B., Jr., Wymore, T., 2011. The Class D beta-lactamase family: residues governing the maintenance and diversity of function. Protein engineering, design &; selection : PEDS. 24, 801-809.
Tamtam, F., Mercier, F., Le Bot, B., Eurin, J., Tuc Dinh, Q., Clément, M., Chevreuil, M., 2008. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Science of The Total Environment. 393, 84-95.
Tenover, F.C., McGowan Jr, J.E., 2008. Antimicrobial Resistance. in: Heggenhougen, H.K. (Ed.), International Encyclopedia of Public Health. Academic Press, Oxford, 211-219.
Wallace, R.J., Jr., Vance, P., Weissfeld, A., Martin, R.R., 1978. Beta-lactamase production and resistance to beta-lactam antibiotics in Nocardia. Antimicrobial agents and chemotherapy. 14, 704-709.
Watanabe, M., Iyobe, S., Inoue, M., Mitsuhashi, S., 1991. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 35, 147-151.
Watkinson, A.J., Murby, E.J., Costanzo, S.D., 2007. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research. 41, 4164-4176.
Wilder, M.N., 2000. Government regulations concerning the use of chemicals in aquaculture in japan. Use of Chemicals in Aquaculture in Asia : Proceedings of the Meeting on the Use of Chemicals in Aquaculture in Asia 20-22 May 1996, Tigbauan, Iloilo, Philippines 119-126.
Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., Fanelli, R., 2010. Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials. 179, 1042-1048.
行政院農業委員會, 2011. 動物用藥品使用準則.中華民國100年8月17日行政院農業委員會農防字第1001474006號修正發布.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top