跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林育如
論文名稱:β-葡聚糖對脂多醣誘發巨噬細胞發炎反應的影響
論文名稱(外文):Effect of β-glucan on lipopolysaccharide-induced inflammation in macrophage
指導教授:左克強
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
畢業學年度:102
語文別:中文
中文關鍵詞:葡聚醣發炎反應抗發炎β-glucan
相關次數:
  • 被引用被引用:1
  • 點閱點閱:611
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
葡聚醣 (β-glucan) 為多個葡萄糖組成的聚合物,廣泛地存在於植物、藻類、細菌及真菌類裡。過去有研究指出,β-glucan除了能降低發炎反應之外,也具有降低人體血清中低密度脂蛋白膽固醇含量,增加腸胃道功能和免疫調節作用。但β-glucan會因為來源屬性的不同,使得結構、分子量大小會有差異,進而影響每種β-glucan的功能性。儘管,目前為止有許多研究方向探討各種β-glucan的功能性,但較少有文獻比較不同來源之β-glucan抑制發炎反應之能力。因此,本研究依來源和結構的不同,以穀類(大麥)、藻類(昆布)、真菌類(酵母菌)三種β-glucan為研究樣本,比較其三種由LPS誘發巨噬細胞Raw 264.7 為發炎細胞模式其發炎因子之效果。本實驗方法以反轉錄聚合酶連鎖(Reverse transcription-PCR, RT-PCR)反應及酵素免疫分析法 (Enzyme-linked immunosorbent assay, ELISA)分析細胞中之發炎因子如:ICAM-1、MCP-1、IL-1β、NF-κB及iNOS之表現量。
  在LPS誘發Raw 264.7發炎反應之細胞模式下,發現大麥β-glucan濃度150、200μg/mL時,能顯著減少IL-1β、NF-κB的表現量。昆布β-glucan濃度100μg/mL時,與LPS誘發組相比,能顯著抑制ICAM-1的表現量; IL-1β的表現量,當昆布β-glucan濃度150、200μg/mL時,能被顯著抑制。
酵母菌β-glucan的部分,除了NF-κB之外,發炎因子ICAM-1、MCP-1、IL-1β的表現量,在酵母菌β-glucan濃度200μg/mL時會被顯著抑制。
  接著依濃度不同,來比較三種β-glucan抑制發炎因子的效果,發現
酵母菌β-glucan於濃度200 μg/mL相較於大麥和昆布β-glucan,前者較能顯著抑制ICAM-1、MCP-1、IL-1β這三種發炎因子。在NF-κB的部分,三種β-glucan於濃度50、100、150 μg/mL時,NFκB表現量下降之幅度沒有顯著差異。
  由以上結果推測本實驗之結論,三種不同來源穀類(大麥)、藻類(昆布)、真菌類(酵母菌) β-glucan中,酵母菌β-glucan相較於大麥及昆布β-glucan,酵母菌β-glucan最能抑制發炎因子ICAM-1、MCP-1、IL-1β的表現量,同時也證實β-glucan確實能抑制發炎反應之相關因子。

β-glucans are polymers of glucose linked by glycosidic bonds, they are found in plants, bacteria and fungal. It might affect their property due to different sources and structures. Therefore, the objective of this study was to investigate three different kinds of β-glucans (barley, seaweed, yeast-derived β-glucan) and compare their anti-inflammatory effect to LPS-induced inflammation in Raw 264.7 cell. The inflammatory factors analyzed by the application of reverse transcription-PCR and enzyme-linked immunosorbent assay in this study included intercellular adhesion molecule 1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), interleukin-1β (IL-1β), nuclear factor-kB (NF-κB) and inducible nitric oxide synthase (iNOS).
The results showed that barley-derived β-glucan at 150, 200 μg/mL decreased production of IL-1β and NF-κB. Seaweed-derived β-glucan suppressed the content of ICAM-1 at 100 μg/mL and inhibited the content of IL-1β at 150, 200 μg/mL. However, yeast-derived β-glucan reduced the content of ICAM-1, MCP-1, IL-1β at concentration of 200 μg/mL.
In addition, yeast-derived β-glucan compared with barley-derived β-glucan, seaweed-derived β-glucan at 200 μg/mL showed the better inhibitory effect on ICAM-1, MCP-1, IL-1β. However, there were no significant differences on NF-κB at concentration of 50, 100, 150 μg/mL of three different kinds of β-glucans.
In conclusion, the comparative results of β-glucans in this study indicated that yeast-derived β-glucan has better inhibitory effects on production of ICMA-1, MCP-1, IL-1β under LPS-induced inflammation in Raw 264.7 cell.

目錄
中文摘要.........I
Abstract......III
目錄............IV
表目錄..........XII
圖目錄.........XIII
縮寫總表.........XV
壹、前言..........1
1.1研究動機.......1
1.2 研究目的......3
貳、文獻回顧.......4
2.1 葡聚醣簡介.....4
2.1.1 穀類β-glucan ( cereal β-glucan )...4
2.1.2 真菌β-glucan (fungal β-glucan).....6
2.1.3 藻類β-glucan (seaweed β-glucan)....7
2.2 發炎反應.......9
2.2.1 發炎反應簡介 ..9
2.2.2 脂多醣與巨噬細胞....10
2.2.3 發炎反應相關因子.....11
參、實驗材料與方法..17
3.1 實驗架構......17
3.2 實驗材料......18
3.2.1材料........18
3.2.2 化學試劑....18
3.2.3 儀器及相關設備.......19
3.3 實驗方法......20
3.3.1 細胞試驗....20
3.3.2 MTT細胞存活率試驗....21
3.3.3 一氧化氮含量分析......22
3.3.4 介白素-1β (Interleukin 1β, IL-1β)含量分析....22
3.3.5 細胞黏附分子(Intercellular Adhesion Molecule 1, ICAM-1)含量分析...23
3.3.6 單核球趨化蛋白(Monocyte Chemotactic Protein-1, MCP-1)含量分析......23
3.3.7 核因子-κB (Nuclear Factor-Kappa B, NF-κB)含量分析....24
3.3.8 Reverse transcription polymerase chain reaction....25
3.4 統計分析......28
肆、結果...29
4.1. β-glucan對Raw 264.7 細胞存活率之影響....29
4.2 大麥β-glucan對發炎因子含量的影響..30
4.2.1 大麥β-glucan對LPS誘導Raw 264.7 巨噬細胞ICAM-1含量之影響.. 30
4.2.2大麥β-glucan對LPS誘導Raw 264.7 巨噬細胞MCP-1含量之影響...30
4.2.3大麥β-glucan對LPS誘導Raw 264.7 巨噬細胞IL-1β含量之影響...30
4.2.4大麥β-glucan對LPS誘導Raw 264.7 巨噬細胞NF-κB含量之影響...31
4.3 昆布β-glucan對發炎因子含量的影響..31
4.3.1 昆布β-glucan對LPS誘導Raw 264.7 巨噬細胞ICAM-1含量之影響.. 31
4.3.2 昆布β-glucan對LPS誘導Raw 264.7 巨噬細胞MCP-1含量之影響..32
4.3.3 昆布β-glucan對LPS誘導Raw 264.7 巨噬細胞IL-1β含量之影響..32
4.3.4 昆布β-glucan對LPS誘導Raw 264.7 巨噬細胞NF-κB含量之影響..32
4.4 酵母菌β-glucan對發炎因子含量的影響........33
4.4.1酵母菌β-glucan對LPS誘導Raw 264.7 巨噬細胞ICAM-1含量之影響.. 33
4.4.2酵母菌β-glucan對LPS誘導Raw 264.7 巨噬細胞MCP-1含量之影響..33
4.4.3酵母菌β-glucan對LPS誘導Raw 264.7 巨噬細胞IL-1β含量之影響..34
4.4.4酵母菌β-glucan對LPS誘導Raw 264.7 巨噬細胞NF-κB含量之影響..34
4.5 比較各β-glucan於不同劑量對LPS誘導Raw 264.7巨噬細胞ICAM-1含量之變化....35
4.5.1 β-glucan於50μg/mL對LPS誘導Raw 264.7巨噬細胞ICAM-1含量之影響......35
4.5.2 β-glucan於100 μg/mL對LPS誘導Raw 264.7巨噬細胞ICAM-1含量之影響.....35
4.5.3 β-glucan於150 μg/mL對LPS誘導Raw 264.7巨噬細胞ICAM-1含量之影響.....35
4.5.4 β-glucan於200 μg/mL對LPS誘導Raw 264.7巨噬細胞ICAM-1含量之影響.....36
4.6. 比較各β-glucan於不同劑量對LPS誘導Raw 264.7巨噬細胞MCP-1含量之變化.....36
4.6.1 β-glucan於50 μg/mL對LPS誘導Raw 264.7巨噬細胞ICAM-1含量之影響......36
4.6.2 β-glucan於100 μg/mL對LPS誘導Raw 264.7巨噬細胞MCP-1含量之影響......37
4.6.3 β-glucan於150 μg/mL對LPS誘導Raw 264.7巨噬細胞MCP-1含量之影響......37
4.6.4 β-glucan於200 μg/mL對LPS誘導Raw 264.7巨噬細胞MCP-1含量之影響......37
4.7. 比較各β-glucan於不同劑量對LPS誘導Raw 264.7巨噬細胞IL-1β含量之變化.....38
4.7.1 β-glucan於50 μg/mL對LPS誘導Raw 264.7巨噬細胞IL-1β含量之影響.......38
4.7.2 β-glucan於100 μg/mL對LPS誘導Raw 264.7巨噬細胞IL-1β含量之影響.......38
4.7.3 β-glucan於150 μg/mL對LPS誘導Raw 264.7巨噬細胞IL-1β含量之影響.......39
4.7.4 β-glucan於200 μg/mL對LPS誘導Raw 264.7巨噬細胞IL-1β含量之影響.......39
4.8比較各β-glucan於不同劑量對LPS誘導Raw 264.7巨噬細胞NF-κB含量之變化.......39
4.8.1 β-glucan於50 μg/mL對LPS誘導Raw 264.7巨噬細胞NF-κB含量之影響.......39
4.8.2 β-glucan於100 μg/mL對LPS誘導Raw 264.7巨噬細胞NF-κB含量之影響.......40
4.8.3 β-glucan於150 μg/mL對LPS誘導Raw 264.7巨噬細胞NF-κB含量之影響.......40
4.9大麥β-glucan對發炎因子mRNA表現量之影響.....41
4.9.1大麥β-glucan對LPS誘導Raw 264.7 巨噬細胞ICAM-1 mRNA之影響..41
4.9.2大麥β-glucan對LPS誘導Raw 264.7 巨噬細胞MCP-1 mRNA之影響.. 41
4.9.3大麥β-glucan對LPS誘導Raw 264.7 巨噬細胞IL-1β mRNA之影響.. 42
4.9.4大麥β-glucan對LPS誘導Raw 264.7 巨噬細胞iNOS mRNA之影響..42
4.10昆布β-glucan對發炎因子mRNA表現量之影響..42
4.10.1 昆布β-glucan對LPS誘導Raw 264.7 巨噬細胞ICAM-1 mRNA之影響..42
4.10.2昆布β-glucan對LPS誘導Raw 264.7 巨噬細胞MCP-1 mRNA之影響..43
4.10.3昆布β-glucan對LPS誘導Raw 264.7 巨噬細胞IL-1β mRNA之影響..43
4.10.4昆布β-glucan對LPS誘導Raw 264.7 巨噬細胞iNOS mRNA之影響..43
4.11酵母菌β-glucan對發炎因子mRNA表現量之影響..44
4.11.1酵母菌β-glucan對LPS誘導Raw 264.7 巨噬細胞ICAM-1 mRNA之影響..44
4.11.2酵母菌β-glucan對LPS誘導Raw 264.7 巨噬細胞MCP-1 mRNA之影響..44
4.11.3酵母菌β-glucan對LPS誘導Raw 264.7 巨噬細胞IL-1β mRNA之影響..45
4.11.4酵母菌β-glucan對LPS誘導Raw 264.7 巨噬細胞iNOS mRNA之影響..45
伍、討論..57
5.1 β-glucan於細胞存活率之影響.....57
5.2 β-glucan抗發炎特性之影響.......58
5.2.1 大麥β-glucan抗發炎特性之影響..58
5.2.2 昆布β-glucan抗發炎特性之影響..59
5.2.3 酵母菌β-glucan抗發炎特性之影響 ..60
5.3 依相同劑量比較各β-glucan抗發炎之影響.......61
5.3.1 比較β-glucan於相同劑量對ICAM-1含量之影響.......61
5.3.2 比較β-glucan於相同劑量對MCP-1含量之影響........61
5.3.3 比較β-glucan於相同劑量對IL-1β含量之影響........62
5.3.4比較β-glucan於相同劑量對NF-κB含量之影響..62
5.4 綜合討論......63
陸、結論..65
柒、參考文獻.......66


Anderson, M. E., &; Siahaan, T. J. (2003). Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides, 24(3), 487-501. doi: 10.1016/s0196-9781(03)00083-4
Arena, M. P., Caggianiello, G., Fiocco, D., Russo, P., Torelli, M., Spano, G., &; Capozzi, V. (2014). Barley beta-glucans-containing food enhances probiotic performances of beneficial bacteria. Int J Mol Sci, 15(2), 3025-3039. doi: 10.3390/ijms15023025
Behall, K. M., Scholfield, D. J., &; Hallfrisch, J. G. (2006). Barley β-glucan reduces plasma glucose and insulin responses compared with resistant starch in men. Nutrition Research, 26(12), 644-650. doi: 10.1016/j.nutres.2006.10.001
Bernardshaw, S., Hetland, G., Ellertsen, L. K., Tryggestad, A. M., &; Johnson, E. (2005). An extract of the medicinal mushroom Agaricus blazei Murill differentially stimulates production of pro-inflammatory cytokines in human monocytes and human vein endothelial cells in vitro. Inflammation, 29(4-6), 147-153. doi: 10.1007/s10753-006-9010-2
Berner, M. D., Sura, M. E., Alves, B. N., &; Hunter, K. W., Jr. (2005). IFN-gamma primes macrophages for enhanced TNF-alpha expression in response to stimulatory and non-stimulatory amounts of microparticulate beta-glucan. Immunol Lett, 98(1), 115-122. doi: 10.1016/j.imlet.2004.10.020
Budai, M. M., Varga, A., Milesz, S., Tozser, J., &; Benko, S. (2013). Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol, 56(4), 471-479. doi: 10.1016/j.molimm.2013.05.005
Castellanos-Morales, V., Keiser, C., Cárdenas-Navarro, R., Grausgruber, H., Glauninger, J., García-Garrido, J. M., Vierheilig, H. (2011). The bioprotective effect of AM root colonization against the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici in barley depends on the barley variety. Soil Biology and Biochemistry, 43(4), 831-834. doi: 10.1016/j.soilbio.2010.12.020
Chanput, W., Mes, J., Vreeburg, R. A., Savelkoul, H. F., &; Wichers, H. J. (2010). Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food Funct, 1(3), 254-261. doi: 10.1039/c0fo00113a
Chen, J., &; Seviour, R. (2007). Medicinal importance of fungal beta-(1-->3), (1-->6)-glucans. Mycol Res, 111(Pt 6), 635-652. doi: 10.1016/j.mycres.2007.02.011
Cheng, H., Mollica, M. Y., Lee, S. H., Wang, L., Velazquez-Martinez, C. A., &; Wu, S. (2012). Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion. Toxicol Appl Pharmacol, 264(2), 161-166. doi: 10.1016/j.taap.2012.07.029
Cheung, D. W., Koon, C. M., Wat, E., Ko, C. H., Chan, J. Y., Yew, D. T., Fung, K. P. (2013). A herbal formula containing roots of Salvia miltiorrhiza (Danshen) and Pueraria lobata (Gegen) inhibits inflammatory mediators in LPS-stimulated RAW 264.7 macrophages through inhibition of nuclear factor kappaB (NFkappaB) pathway. J Ethnopharmacol, 145(3), 776-783. doi: 10.1016/j.jep.2012.12.011
Choi, W. S., Shin, P. G., Lee, J. H., &; Kim, G. D. (2012). The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cell Immunol, 280(2), 164-170. doi: 10.1016/j.cellimm.2012.12.007
Conductier, G., Blondeau, N., Guyon, A., Nahon, J. L., &; Rovere, C. (2010). The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol, 224(1-2), 93-100. doi: 10.1016/j.jneuroim.2010.05.010
Davis, M. C., Zautra, A. J., Younger, J., Motivala, S. J., Attrep, J., &; Irwin, M. R. (2008). Chronic stress and regulation of cellular markers of inflammation in rheumatoid arthritis: implications for fatigue. Brain Behav Immun, 22(1), 24-32. doi: 10.1016/j.bbi.2007.06.013
de Lima, T. M., Sampaio, S. C., Petroni, R., Brigatte, P., Velasco, I. T., &; Soriano, F. G. (2014). Phagocytic activity of LPS tolerant macrophages. Mol Immunol, 60(1), 8-13. doi: 10.1016/j.molimm.2014.03.010
Deshmane, S. L., Kremlev, S., Amini, S., &; Sawaya, B. E. (2009). Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res, 29(6), 313-326. doi: 10.1089/jir.2008.0027
Eum, H. A., Park, S. W., &; Lee, S. M. (2007). Role of nitric oxide in the expression of hepatic vascular stress genes in response to sepsis. Nitric Oxide, 17(3-4), 126-133. doi: 10.1016/j.niox.2007.08.003
Forstermann, U. (2010). Nitric oxide and oxidative stress in vascular disease. Pflugers Arch, 459(6), 923-939. doi: 10.1007/s00424-010-0808-2
Freimund, S., Sauter, M., Käppeli, O., &; Dutler, H. (2003). A new non-degrading isolation process for 1,3-β-d-glucan of high purity from baker's yeast Saccharomyces cerevisiae. Carbohydr Polym, 54(2), 159-171. doi: 10.1016/s0144-8617(03)00162-0
Gao, Y., Chen, X., Fang, L., Liu, F., Cai, R., Peng, C., &; Qi, Y. (2014). Rhein exerts pro- and anti-inflammatory actions by targeting IKKbeta inhibition in LPS-activated macrophages. Free Radic Biol Med, 72, 104-112. doi: 10.1016/j.freeradbiomed.2014.04.001
Gentile, C., Allegra, M., Angileri, F., Pintaudi, A. M., Livrea, M. A., &; Tesoriere, L. (2012). Polymeric proanthocyanidins from Sicilian pistachio (Pistacia vera L.) nut extract inhibit lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Eur J Nutr, 51(3), 353-363. doi: 10.1007/s00394-011-0220-5
Guerra Dore, C. M., Azevedo, T. C., de Souza, M. C., Rego, L. A., de Dantas, J. C., Silva, F. R., Leite, E. L. (2007). Antiinflammatory, antioxidant and cytotoxic actions of beta-glucan-rich extract from Geastrum saccatum mushroom. Int Immunopharmacol, 7(9), 1160-1169. doi: 10.1016/j.intimp.2007.04.010
Gupta, S., &; Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science &; Technology, 22(6), 315-326. doi: 10.1016/j.tifs.2011.03.011
Hounoki, H., Sugiyama, E., Mohamed, S. G., Shinoda, K., Taki, H., Abdel-Aziz, H. O., Miyahara, T. (2008). Activation of peroxisome proliferator-activated receptor gamma inhibits TNF-alpha-mediated osteoclast differentiation in human peripheral monocytes in part via suppression of monocyte chemoattractant protein-1 expression. Bone, 42(4), 765-774. doi: 10.1016/j.bone.2007.11.016
Hsu, C. C., Lien, J. C., Chang, C. W., Chang, C. H., Kuo, S. C., &; Huang, T. F. (2013). Yuwen02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NFkB and MAPK activation. Biochem Pharmacol, 85(3), 385-395. doi: 10.1016/j.bcp.2012.11.002
Hu, B., Zhang, H., Meng, X., Wang, F., &; Wang, P. (2014). Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. J Ethnopharmacol, 153(3), 846-853. doi: 10.1016/j.jep.2014.03.059
Kankkunen, P., Teirila, L., Rintahaka, J., Alenius, H., Wolff, H., &; Matikainen, S. (2010). (1,3)-beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J Immunol, 184(11), 6335-6342. doi: 10.4049/jimmunol.0903019
Kim, Y. M., Kim, M. Y., Kim, H. J., Roh, G. S., Ko, G. H., Seo, H. G., . . . Chang, K. C. (2011). Compound C independent of AMPK inhibits ICAM-1 and VCAM-1 expression in inflammatory stimulants-activated endothelial cells in vitro and in vivo. Atherosclerosis, 219(1), 57-64. doi: 10.1016/j.atherosclerosis.2011.06.043
Knapp, S. (2009). LPS and bacterial lung inflammation models. Drug Discovery Today: Disease Models, 6(4), 113-118. doi: 10.1016/j.ddmod.2009.08.003
Kubala, L., Ruzickova, J., Nickova, K., Sandula, J., Ciz, M., &; Lojek, A. (2003). The effect of (1→3)-β-d-glucans, carboxymethylglucan and schizophyllan on human leukocytes in vitro. Carbohydrate Research, 338(24), 2835-2840. doi: 10.1016/j.carres.2003.09.007
Kuo, M. C., Weng, C. Y., Ha, C. L., &; Wu, M. J. (2006). Ganoderma lucidum mycelia enhance innate immunity by activating NF-kappaB. J Ethnopharmacol, 103(2), 217-222. doi: 10.1016/j.jep.2005.08.010
Kwon, Ju, S. M., Youn, G. S., Choi, S. Y., &; Park, J. (2013). Suppression of iNOS and COX-2 expression by flavokawain A via blockade of NF-kappaB and AP-1 activation in RAW 264.7 macrophages. Food Chem Toxicol, 58, 479-486. doi: 10.1016/j.fct.2013.05.031
Kwon, Qiu, Z., Hashimoto, M., Yamamoto, K., &; Kimura, T. (2009). Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg, 197(4), 503-509. doi: 10.1016/j.amjsurg.2007.11.021
Lange, M., Nakano, Y., Traber, D. L., Hamahata, A., Esechie, A., Jonkam, C., . . . Enkhbaatar, P. (2010). Role of different nitric oxide synthase isoforms in a murine model of acute lung injury and sepsis. Biochem Biophys Res Commun, 399(2), 286-291. doi: 10.1016/j.bbrc.2010.07.071
Lee, Chang, H. H., Chung, Y. H., &; Lee, T. Y. (2011). Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-kappaB pathway. J Ethnopharmacol, 135(3), 678-684. doi: 10.1016/j.jep.2011.03.068
Lee, Kang, D. H., Lee, D. H., Chung, I. K., Jang, J. Y., Kim, J. I., Seol, S. Y. (2014). A comparative study of DA-9601 and misoprostol for prevention of NSAID-associated gastroduodenal injury in patients undergoing chronic NSAID treatment. Arch Pharm Res. doi: 10.1007/s12272-014-0408-3
Lee, Kim, Y. J., Kim, H. J., Kim, Y. S., &; Park, W. (2012). Immunostimulatory effect of laminarin on RAW 264.7 mouse macrophages. Molecules, 17(5), 5404-5411. doi: 10.3390/molecules17055404
Legras, J. L., Merdinoglu, D., Cornuet, J. M., &; Karst, F. (2007). Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol, 16(10), 2091-2102. doi: 10.1111/j.1365-294X.2007.03266.x
Levinsson, A., Olin, A. C., Bjorck, L., Rosengren, A., &; Nyberg, F. (2014). Nitric oxide synthase (NOS) single nucleotide polymorphisms are associated with coronary heart disease and hypertension in the INTERGENE study. Nitric Oxide, 39C, 1-7. doi: 10.1016/j.niox.2014.03.164
Li, J., &; Mansmann, U. R. (2013). Modeling of non-steroidal anti-inflammatory drug effect within signaling pathways and miRNA-regulation pathways. PLoS One, 8(8), e72477. doi: 10.1371/journal.pone.0072477
Limberger-Bayer, V. M., de Francisco, A., Chan, A., Oro, T., Ogliari, P. J., &; Barreto, P. L. (2014). Barley beta-glucans extraction and partial characterization. Food Chem, 154, 84-89. doi: 10.1016/j.foodchem.2013.12.104
Lin, T. H., Tamaki, Y., Pajarinen, J., Waters, H. A., Woo, D. K., Yao, Z., &; Goodman, S. B. (2014). Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-kappaB as a therapeutic target. Acta Biomater, 10(1), 1-10. doi: 10.1016/j.actbio.2013.09.034
Liu, J., Gunn, L., Hansen, R., &; Yan, J. (2009). Combined yeast-derived beta-glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Exp Mol Pathol, 86(3), 208-214. doi: 10.1016/j.yexmp.2009.01.006
Luc, G., Arveiler, D., Evans, A., Amouyel, P., Ferrieres, J., Bard, J.-M., . . . Ducimetiere, P. (2003). Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and incident coronary heart disease: The PRIME Study. Atherosclerosis, 170(1), 169-176. doi: 10.1016/s0021-9150(03)00280-6
Luiking, Y. C., Engelen, M. P., &; Deutz, N. E. (2010). Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care, 13(1), 97-104. doi: 10.1097/MCO.0b013e328332f99d
Mandhane, S. N., Shah, J. H., &; Thennati, R. (2011). Allergic rhinitis: an update on disease, present treatments and future prospects. Int Immunopharmacol, 11(11), 1646-1662. doi: 10.1016/j.intimp.2011.07.005
Melgarejo, E., Medina, M. A., Sanchez-Jimenez, F., &; Urdiales, J. L. (2009). Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol, 41(5), 998-1001. doi: 10.1016/j.biocel.2008.07.018
Mengoni, E. S., Vichera, G., Rigano, L. A., Rodriguez-Puebla, M. L., Galliano, S. R., Cafferata, E. E., . . . Vojnov, A. A. (2011). Suppression of COX-2, IL-1beta and TNF-alpha expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L. Fitoterapia, 82(3), 414-421. doi: 10.1016/j.fitote.2010.11.023
Mikkelsen, M. S., Jespersen, B. M., Larsen, F. H., Blennow, A., &; Engelsen, S. B. (2013). Molecular structure of large-scale extracted beta-glucan from barley and oat: Identification of a significantly changed block structure in a high beta-glucan barley mutant. Food Chem, 136(1), 130-138. doi: 10.1016/j.foodchem.2012.07.097
Min, K. J., Cho, K. H., &; Kwon, T. K. (2012). The effect of oxidized low density lipoprotein (oxLDL)-induced heme oxygenase-1 on LPS-induced inflammation in RAW 264.7 macrophage cells. Cell Signal, 24(6), 1215-1221. doi: 10.1016/j.cellsig.2012.02.001
Muntane, J., De la Rosa, A. J., Marin, L. M., &; Padillo, F. J. (2013). Nitric oxide and cell death in liver cancer cells. Mitochondrion, 13(3), 257-262. doi: 10.1016/j.mito.2012.09.004
Murphy, P., Bello, F. D., O'Doherty, J. V., Arendt, E. K., Sweeney, T., &; Coffey, A. (2012). Effects of cereal beta-glucans and enzyme inclusion on the porcine gastrointestinal tract microbiota. Anaerobe, 18(6), 557-565. doi: 10.1016/j.anaerobe.2012.09.005
Oh, Cho, W. K., Im, G. Y., Jeong, Y. H., Hwang, Y. H., Liang, C., &; Ma, J. Y. (2012). Anti-inflammatory effect of Lycium Fruit water extract in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Int Immunopharmacol, 13(2), 181-189. doi: 10.1016/j.intimp.2012.03.020
Oh, Kwon, M. S., Kim, H. J., Jeon, B. H., Kim, H. R., Choi, H. O., Jun, C. D. (2011). Intermediate monomer-dimer equilibrium structure of native ICAM-1: implication for enhanced cell adhesion. Exp Cell Res, 317(2), 163-172. doi: 10.1016/j.yexcr.2010.10.004
Panee, J. (2012). Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine, 60(1), 1-12. doi: 10.1016/j.cyto.2012.06.018
Panicker, S. R., Sreenivas, P., Babu, M. S., Karunagaran, D., &; Kartha, C. C. (2010). Quercetin attenuates Monocyte Chemoattractant Protein-1 gene expression in glucose primed aortic endothelial cells through NF-kappaB and AP-1. Pharmacol Res, 62(4), 328-336. doi: 10.1016/j.phrs.2010.06.003
Park, Kim, I. H., Kim, J., &; Nam, T. J. (2012). Induction of apoptosis by laminarin, regulating the insulin-like growth factor-IR signaling pathways in HT-29 human colon cells. Int J Mol Med, 30(4), 734-738. doi: 10.3892/ijmm.2012.1084
Park, Kim, Y. M., Park, S. W., Kim, H. J., Lee, J. H., Lee, D. U., &; Chang, K. C. (2013). Induction of HO-1 through p38 MAPK/Nrf2 signaling pathway by ethanol extract of Inula helenium L. reduces inflammation in LPS-activated RAW 264.7 cells and CLP-induced septic mice. Food Chem Toxicol, 55, 386-395. doi: 10.1016/j.fct.2012.12.027
Remels, A. H., Gosker, H. R., Langen, R. C., Polkey, M., Sliwinski, P., Galdiz, J., . . . Schols, A. M. (2014). Classical NF-kappaB activation impairs skeletal muscle oxidative phenotype by reducing IKK-alpha expression. Biochim Biophys Acta, 1842(2), 175-185. doi: 10.1016/j.bbadis.2013.11.001
Riad, A., Unger, D., Du, J., Westermann, D., Mohr, Z., Sobirey, M., Tschope, C. (2007). Chronic inhibition of p38MAPK improves cardiac and endothelial function in experimental diabetes mellitus. Eur J Pharmacol, 554(1), 40-45. doi: 10.1016/j.ejphar.2006.08.065
Rieder, A., Grimmer, S., Kolset, S. O., Michaelsen, T. E., &; Knutsen, S. H. (2011). Cereal β-glucan preparations of different weight average molecular weights induce variable cytokine secretion in human intestinal epithelial cell lines. Food Chem, 128(4), 1037-1043. doi: 10.1016/j.foodchem.2011.04.010
Roy, S., Dickerson, R., Khanna, S., Collard, E., Gnyawali, U., Gordillo, G. M., &; Sen, C. K. (2011). Particulate beta-glucan induces TNF-alpha production in wound macrophages via a redox-sensitive NF-kappabeta-dependent pathway. Wound Repair Regen, 19(3), 411-419. doi: 10.1111/j.1524-475X.2011.00688.x
Ryu, J. H., Lee, S., You, S., Shim, J. H., &; Yoo, S. H. (2012). Effects of barley and oat beta-glucan structures on their rheological and thermal characteristics. Carbohydr Polym, 89(4), 1238-1243. doi: 10.1016/j.carbpol.2012.04.025
Saetre, T., Enoksen, E., Lyberg, T., Stranden, E., Jorgensen, J. J., Sundhagen, J. O., &; Hisdal, J. (2011). Supervised exercise training reduces plasma levels of the endothelial inflammatory markers E-selectin and ICAM-I in patients with peripheral arterial disease. Angiology, 62(4), 301-305. doi: 10.1177/0003319710385338
Samuelsen, A. B., Schrezenmeir, J., &; Knutsen, S. H. (2014). Effects of orally administered yeast-derived beta-glucans: a review. Mol Nutr Food Res, 58(1), 183-193. doi: 10.1002/mnfr.201300338
Sener, G., Toklu, H. Z., &; Cetinel, S. (2007). beta-Glucan protects against chronic nicotine-induced oxidative damage in rat kidney and bladder. Environ Toxicol Pharmacol, 23(1), 25-32. doi: 10.1016/j.etap.2006.06.003
Serrano, D., Bhowmick, T., Chadha, R., Garnacho, C., &; Muro, S. (2012). Intercellular adhesion molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of drug carriers by the vascular endothelium. Arterioscler Thromb Vasc Biol, 32(5), 1178-1185. doi: 10.1161/ATVBAHA.111.244186
Shi, H., Ma, J., Mi, C., Li, J., Wang, F., Lee, J. J., &; Jin, X. (2014). Amorfrutin A inhibits TNF-alpha-induced NF-kappaB activation and NF-kappaB-regulated target gene products. Int Immunopharmacol, 21(1), 56-62. doi: 10.1016/j.intimp.2014.04.016
Shimizu, M., Ogura, K., Mizoguchi, I., Chiba, Y., Higuchi, K., Ohtsuka, H., Yoshimoto, T. (2013). IL-27 promotes nitric oxide production induced by LPS through STAT1, NF-kappaB and MAPKs. Immunobiology, 218(4), 628-634. doi: 10.1016/j.imbio.2012.07.028
Slight, S. R., &; Khader, S. A. (2013). Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev, 24(2), 105-113. doi: 10.1016/j.cytogfr.2012.10.002
Slyvka, Y., Wang, Z., Yee, J., Inman, S. R., &; Nowak, F. V. (2011). Antioxidant diet, gender and age affect renal expression of nitric oxide synthases in obese diabetic rats. Nitric Oxide, 24(1), 50-60. doi: 10.1016/j.niox.2010.11.004
Sweeney, T., Collins, C. B., Reilly, P., Pierce, K. M., Ryan, M., &; O'Doherty, J. V. (2012). Effect of purified beta-glucans derived from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations, volatile fatty acids and pro-inflammatory cytokines in the gastrointestinal tract of pigs. Br J Nutr, 108(7), 1226-1234. doi: 10.1017/S0007114511006751
Tajima, A. (2013). Non-Steroidal Anti-Inflammatory Drug (NSAID)-Induced Small Intestinal Injury. Pharmaceutica Analytica Acta, 05(01). doi: 10.4172/2153-2435.1000282
Theuwissen, E., &; Mensink, R. P. (2008). Water-soluble dietary fibers and cardiovascular disease. Physiol Behav, 94(2), 285-292. doi: 10.1016/j.physbeh.2008.01.001
Tsutsumi, T., Nakashima, K., Isoda, T., Yokota, M., &; Nishihara, T. (2010). Involvement of adhesion molecule in in vitro plaque-like formation of macrophages stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide. J Periodontal Res, 45(4), 550-556. doi: 10.1111/j.1600-0765.2010.01270.x
Ufuk, Vartan Kurtcuoglu, &; Poulikakos, D. (2007). Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Am J Physiol Heart Circ Physiol, 294, H909–H919. doi: 10.1152/ajpheart.01082.2007.-The
Uskoković, A., Mihailović, M., Dinić, S., Arambašić Jovanović, J., Grdović, N., Marković, J., Vidaković, M. (2013). Administration of a β-glucan-enriched extract activates beneficial hepatic antioxidant and anti-inflammatory mechanisms in streptozotocin-induced diabetic rats. Journal of Functional Foods, 5(4), 1966-1974. doi: 10.1016/j.jff.2013.09.018
Vo, V. A., Lee, J. W., Chang, J. E., Kim, J. Y., Kim, N. H., Lee, H. J., Kwon, Y. S. (2012). Avicularin Inhibits Lipopolysaccharide-Induced Inflammatory Response by Suppressing ERK Phosphorylation in RAW 264.7 Macrophages. Biomol Ther (Seoul), 20(6), 532-537. doi: 10.4062/biomolther.2012.20.6.532
Wang, &; Chen, F. Q. (2009). Clinical significance and different levels of urinary monocyte chemoattractant protein-1 in type 2 diabetes mellitus. Diabetes Res Clin Pract, 83(2), 215-219. doi: 10.1016/j.diabres.2008.09.048
Wang, Song, N., Jiang, H., Wang, J., &; Xie, J. (2013). Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta, 1832(5), 618-625. doi: 10.1016/j.bbadis.2013.01.021
Woldeab, G., Yuen, J., Fininsa, C., &; Singh, H. (2007). Barley leaf rust (Puccinia hordei Otth) in three production systems and practices in Ethiopia. Crop Protection, 26(8), 1193-1202. doi: 10.1016/j.cropro.2006.10.016
Wright, C. E., Strike, P. C., Brydon, L., &; Steptoe, A. (2005). Acute inflammation and negative mood: mediation by cytokine activation. Brain Behav Immun, 19(4), 345-350. doi: 10.1016/j.bbi.2004.10.003
Wu, Y., Antony, S., Meitzler, J. L., &; Doroshow, J. H. (2014). Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett, 345(2), 164-173. doi: 10.1016/j.canlet.2013.08.014
Xu, X., Yasuda, M., Mizuno, M., &; Ashida, H. (2012). beta-Glucan from Saccharomyces cerevisiae reduces lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. Biochim Biophys Acta, 1820(10), 1656-1663. doi: 10.1016/j.bbagen.2012.06.015
Yadav, A., Saini, V., &; Arora, S. (2010). MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta, 411(21-22), 1570-1579. doi: 10.1016/j.cca.2010.07.006
Yang, Ji-Hyun Jang, Vinodhkumar Radhakrishnan, Yang-Ha Kim, &; Song, Y.-S. (2008). β-Glucan Suppresses LPS-stimulated NO Production Through the Down-regulation of iNOS Expression and NFκB Transactivation in
Yao, J., Li, C., Zhang, J., Liu, S., Feng, J., Wang, R., Liu, Z. (2014). Expression of nitric oxide synthase (NOS) genes in channel catfish is highly regulated and time dependent after bacterial challenges. Dev Comp Immunol, 45(1), 74-86. doi: 10.1016/j.dci.2014.02.005
Yu, Wei, M., Becknell, B., Trotta, R., Liu, S., Boyd, Z., Caligiuri, M. A. (2006). Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity, 24(5), 575-590. doi: 10.1016/j.immuni.2006.03.016
Yu, Z., LiHua, Y., Qian, Y., &; Yan, L. (2009). Effect of Lentinus edodes polysaccharide on oxidative stress, immunity activity and oral ulceration of rats stimulated by phenol. Carbohydr Polym, 75(1), 115-118. doi: 10.1016/j.carbpol.2008.07.002
Zhao, J., &; Cheung, P. C. (2013). Comparative proteome analysis of Bifidobacterium longum subsp. infantis grown on beta-glucans from different sources and a model for their utilization. J Agric Food Chem, 61(18), 4360-4370. doi: 10.1021/jf400792j

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top