跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許佩瑜
研究生(外文):Pei-Yu Hsu
論文名稱:黃豆之異黃酮分離與定量分析
論文名稱(外文):Isolation and quantitative analysis of isoflavones from soybean
指導教授:陳立耿
指導教授(外文):Lih-Geeng Chen
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:食品科學系研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
畢業學年度:102
語文別:中文
中文關鍵詞:黃豆異黃酮定量分析
外文關鍵詞:soybeanGlycine maxisoflavonequantitative analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:500
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
異黃酮類為豆科植物產生主要二次代謝產物,黃豆 (Glycine max (L.) Merrill) 是最豐富的異黃酮來源,因為異黃酮具有多種生理活性,現今已被廣泛的應用於膳食補充劑、化妝品以及營養保健食品上。在本研究中建立異黃酮分析方法, 使用高效液相層析儀 (high-performance liquid chromatography, HPLC) 分析各家廠牌黃豆中異黃酮的含量。
目前已開發出daidzin, glycitin, genistin, daidzein, glycitein, genistein 等六種大豆異黃酮之高效液相層析分析方法, 使用
Discovery HS C18 (4 mm x 250 mm, 5μm ) 管柱,移動相為 0.05
% TFA - CH3CN (0 min, 95: 5; 55 min, 40: 60; 56 min, 95: 5; 66 min, 95: 5) 做梯度洗脫,流速為 1.0 ml/min ,波長 254 nm 下進行
分析市售黃豆樣品中異黃酮含量測定。利用黃豆樣品為培養基質藉由麴 (Monascus anaka) 代謝轉換。並進一步以不同溶劑及萃取後,使用 LiChrospher 100 RP-18 e (4 mm i.d. x 250 mm, 5μm) 管
柱,移動相為 0.05 % TFA - CH3CN (85: 15, 14 min) 分析異黃酮
daidzin;0.05 % TFA - CH3CN (82: 18, 14 min) 分析異黃酮苷
genistin;0.05 % TFA - CH3CN (70: 30, 30 min) 分析異黃酮苷元
daidzein 及 genistein ,流速為 1.0 ml/min ,吸光值為 254 nm 條
件下進行分析以及分離並確認純度。目前已純化出四種異黃酮成分:
分別為異黃酮苷 daidzin 和 genistin 以及異黃酮苷元 daidzein 和
genistein,並完成方法再現性與精確性之評估。
本研究建立之高效液相層析儀分析方法其結果顯示檢量線之相關係數 (r2) 均大於0.999,表明良好的線性關係,其中以 glyciten,
genistein 最小偵測濃度 0.0305 μg/ml 及最小定量濃度 0.0611
μg/ml 為最佳。每一個市售黃豆樣品之變異係數 (C.V.) 皆小於
2.36 %,回收率的結果分別為112-133 %。分析結果顯示黃豆異黃
酮量介於 1.03-3.87 mg/g,其中以嘉義大學栽種後收成之黃豆 T 1
所含異黃酮量 3.87 mg/g 最高。進一步使用黃豆為基質培養麴菌
(Monascus anaka) 十四天後,黃豆基質中異黃酮苷明顯轉變成異黃酮苷元。而本篇中使用之分離方法可分離純化出純度 95 % 以上之異黃酮苷 daidzin (1.09 g) 、genistin (0.97 g) 及異黃酮苷元 daidzein (10 mg)、genistein (30 mg)。顯示本分析方法之準確度、穩定性及再現性均佳可作為市售黃豆製品異黃酮含量之分析以及有利於黃豆相關產品之開發。
目錄
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅲ
致謝……………………………………………………………………..Ⅴ
目錄……………………………………………………………………..Ⅵ
圖目錄 …………………………………………………………….…...X
表目錄……………………………………………………………....…XⅡ
附圖目錄………………………………………………………..……ⅩⅢ
附表目錄………………………………………………………..……...XV
第一章 前言 …………………………………………………………...1
ㄧ、黃豆簡介……………………………………………………...1
二、黃豆成分組成………………………………………………...1
三、黃豆機能性…………………………………………………...2
四、文獻回顧 ………………………………………………….....6
五、紅麴菌 (Monascus anka) ....................………………….12
(ㄧ) 紅麴菌所產生的高價值代謝產物……………………....13
1. 菌體外水解酵素 (高分子化合物) …………………....13
2. ㄧ級代謝物 (酸、醇和酯類化合物) …………………13
3. 二級代謝產物 …………………………………………13
六、固體發酵 ……………………………………………………14
第二章 材料與方法……………………………………………………16
ㄧ、材料 …………………………………………………………16
二、溶媒及化學試劑………………………………………………18
三、儀器設備………………………………………………………19
四、分離管柱及管柱填充劑………………………………………20
五、實驗架構 ....…………………………………………………21
六、黃豆成分之 HPLC 分析 ...…………………………………23
(ㄧ) 九種異黃酮成分含量分析.……………………………23
(二) 異黃酮苷成分分析........………………………………23
(三) 異黃酮苷元成分分析......................…………………23
(四) 化合物檢量線之製作....………………………………23
(五) 樣品偵測極限及定量極限分析………………………24
(六) 同、異日間之分析方法........................................24
(七) 添加回收率試驗.......................................................25
(八) 市售黃豆樣品萃取物成分含量分析....………………25
七、黃豆活性成分之分離 .……………………………………27
(一) 比較甲醇與水對異黃酮萃取效率製備流程...............27
(二) 黃豆異黃酮苷 daidzin 和 genistin 之最佳萃取及分
離方法探討...........................…………………………28
(三) 黃豆異黃酮苷元之製備.....................……………….32
1. 異黃酮苷元 daidzein 和 genistein 之分離及純化........................................................32
(1) 加熱酸水解........................................................32
(2) 酵素水解........................................................35
(四) 利用黃豆樣品為基質培養 Monascus anka 藉以轉換
黃豆中異黃酮成分含量變化.....................................37
第三章 結果與討論 ………………………………………………… 38
一、黃豆各成分之定量………………………………………...38
(ㄧ) 黃豆各成分之檢量線………………………………….38
(二) 最小偵測極限 (LOD) 及最小定量極限 (LOQ) 之分析
..........................................................39
(三) 同、異日間分析.....................……………………… 40
(四) 添加回收率試驗.......................................................41
(五) 市售黃豆樣品異黃酮成分之含量分析......................42
二、異黃酮苷之製備.......................................................49
(一) 比較甲醇與水對異黃酮成份萃取效率......................49
(二) 異黃酮苷 daidzin 及 genistin 分離及純化.............51
三、異黃酮苷元 daidzein 和 genistein 之分離及純化........52
四、黃豆成分之結構鑑定.......................................................55
(一) 黃豆異黃酮苷之圖譜解析..........................................55
(1) Daidzin 之圖譜解析...................................................55
(2) Genistin 之圖譜解析..................................................57
(二) 黃豆異黃酮苷元之圖譜解析.......................................59
(1) Daidzein 之圖譜解析.................................................59
(2) Genistein 之圖譜解析................................................61
五、利用黃豆 T 3 為培養基質以培養麴菌 Monascus anka 代
謝轉換黃豆基質中異黃酮成分之分析............................63
第四章 結論………………………………………………..65
參考文獻…………………………………………………….67
附圖…………………………………………………………..S1
附表…………………………………………………………S22
圖目錄
圖一 黃酮類基本結構 …………………………………………………4
圖二 黃豆異黃酮之十二種衍生物化學結構圖..………………………5
圖三 黃豆樣品實驗架構………………………………………………22
圖四 市售黃豆成份定量分析流程.........................…………………26
圖五 比較甲醇與水對異黃酮萃取效率製備流程............................27
圖六 黃豆樣品 C 2 水萃取之分離純化流程............………………29
圖七 滅菌後黃豆樣品 T 3 異黃酮劃分流程 ..……….....…………31
圖八 異黃酮苷元加熱酸水解流程..................................................34
圖九 異黃酮苷元酵素水解流程......................................................36
圖十 利用黃豆樣品 T 3 為基質培養麴菌 Monascus anka 藉以轉
換黃豆中異黃酮成分含量分析流程.......................................37
圖十一 六個指標性異黃酮 HPLC 層析圖譜,波長 254 nm (濃度
250 μg/ml)....................................................39
圖十二 各家黃豆樣品之各成分 HPLC 層析圖譜 (254 nm)..........47
圖十三 黃豆樣品 C 2 水萃取之分離純化後層析圖譜...................51
圖十四 異黃酮苷加熱酸水解後使用 Silica gel 管柱製備異黃酮苷元之層析圖譜........................................................53
圖十五 異黃酮苷酵素水解後使用 Sephadex LH-20 管柱製備異黃酮苷元之層析譜........................................................54
圖十六 Daidzin 之結構........................................................56
圖十七 Genistin 之結構........................................................58
圖十八 Daidzein 之結構........................................................60
圖十九 Genistein 之結構........................................................62
圖二十 利用黃豆 T 3 為培養基質藉以培養麴菌 M o n a s c u s
anka 代謝轉換黃豆基質中異黃酮成分含量趨勢
圖. . . .. . . . . . . . . . . . . . . . . . . . . . . . 6 4
表目錄
表ㄧ 市售黃豆樣品……………………………………………………16
表二 市售黑豆樣品……………………………………………………17
表三 黃豆各成分之檢量線........................................................38
表四 黃豆中六種指標性標準品成分之 LOD 及 LOQ...................39
表五 黃豆中異黃酮成分之 intra-day 及 inter-day 之含量及變異係
數.......................................................40
表六 黃豆 T 1 和 T 3 樣品中九種指標性成分含量分析...............41
表七 Daidzin 及 genistin 之添加回收率試驗...............................41
表八 各家黃豆樣品之大豆異黃酮成分含量分析............................48
表九 使用甲醇與水萃取大豆異黃酮含量分析................................50
表十 不同溶劑萃取及製備方法各劃分部異黃酮含量分析..............53
表十一 Daidzin 之 1H-NMR 及 13C-NMR 數據理……..………...56
表十二 Genistin 之 1H-NMR 及 13C-NMR 數據整理..…..……...58
表十三 Daidzein 之 1H-NMR 及 13C-NMR 數據整理....……...60
表十四 Genistein 之 1H-NMR 及 13C-NMR 數據整理...……......62
附圖目錄
附圖一 六個指標性異黃酮標準品之檢量線...................................S1
附圖二 六個指標性異黃酮 HPLC 層析圖譜,波長 254 nm (濃度
250-0.03 μg/ml)....................................................S4
附圖三 黃豆 T 3 滅菌後異黃酮製備各劃分部層析圖 (254 nm)...S5
附圖四 以黃豆 T 3 為基質培養麴菌 Monascus anka 十四天外觀
照片 (A)-(P).....................................................S6
附圖五 Daidzin 1H-NMR 圖譜......................................................S7
附圖六 Daidzin 1H-NMR 圖譜放大 6.6-9.7 ppm..........................S7
附圖七 Daidzin 1H-NMR 圖譜放大 3-5.7 ppm.............................S8
附圖八Daidzin 之 COSY 圖譜.....................................................S8
附圖九 Daidzin 13C-NMR 圖譜.....................................................S9
附圖十 Daidzin 之 DEPT 圖譜.....................................................S9
附圖十一 Daidzin 之 HSQC 圖譜...............................................S10
附圖十二 Daidzin 之 HMBC 圖譜..............................................S10
附圖十三 Genistin 1H-NMR 圖譜................................................S11
附圖十四 Genistin 1H-NMR 圖譜放大 4.5-7.5 ppm...................S11
附圖十五 Genistin 1H-NMR 圖譜放大 3-4 ppm.........................S12
附圖十六 Genistin 之 COSY 圖譜.............................................S12
附圖十七 Genistin 13C-NMR 圖譜..............................................S13
附圖十八 Genistin 之 DEPT 圖譜...............................................S13
附圖十九 Genistin 之 HSQC 圖譜.............................................S14
附圖二十 Genistin 之 HMBC 圖譜............................................S14
附圖二十一 Daidzein 1H-NMR 圖譜...........................................S15
附圖二十二 Daidzein 1H-NMR 放大圖譜 6.7-8.4 ppm...............S15
附圖二十三Daidzein 之 COSY 圖譜.........................................S16
附圖二十四Daidzein 13C-NMR 圖譜...........................................S16
附圖二十五Daidzein 之 DEPT 圖譜..........................................S17
附圖二十六 Daidzein 之 HSQC 圖譜.........................................S17
附圖二十七 Daidzein 之 HMBC 圖譜.........................................S18
附圖二十八 Genistein 1H-NMR 圖譜..........................................S19
附圖二十九 Genistein 之 COSY 圖譜.......................................S19
附圖三十 Genistein 13C-NMR 圖譜............................................S20
附圖三十一 Genistein 之 DEPT 圖譜........................................S20
附圖三十二 Genistein 之 HSQC 圖譜.......................................S21
附圖三十三 Genistein 之 HMBC 圖譜........................S21
附表目錄
附表ㄧ 各家黃豆樣品中異黃酮含量分析;n=3 (Intra - day, 第一
天)......................................................S22
附表二 各家黃豆樣品中異黃酮含量分析;n=3 (Intra - day, 第二
天)......................................................S22
附表三 各家黃豆樣品中異黃酮含量分析;n=3 (Intra - day, 第三
天)......................................................S23
附表四 各家黃豆樣品中異黃酮含量分析;n=3 (Inter - day).......S23
附表五 利用黃豆 T 3 為培養基質藉以培養麴菌 Monascus
anka 代謝轉換黃豆基質中異黃酮成分之分析..............S24
1. J. J. Todd, L. O. Vodkin. Pigmented soybean (Glycine max)
seed coats accumulate proanthocyanidins during development. Plant Physiology, 102 (2), 663-670 (1993).
2. J.E. Kinsella. Functional properties of soy protein. Journal of the American Oil Chemists' Society, 56, 242-258 (1979).
3. J. Medic, C. A. Atkinson, C. R. Hurburgh. Current knowledge in soybean composition. Journal of the American Oil Chemists' Society, 91 (3), 363-384 (2013).
4. M. Fukutake, M. Takahashi, K. Ishida, H. Kawamura, T.
Sugimura, K. Wakabayashi. Quantification of genistein and
genistin in soybeans and soybean products. Food and
Chemical Toxicology, 34 (5), 457-461 (1996).
5. S. H. Quak, S. P. Tan. Use of soy-protein formulas and
soyfood for feeding infants and children in Asia. The
American Journal of Clinical Nutrition, 68 (6), 1444-1446
(1998).
6. C. A. Spilburg, A. C. Goldberg, J. B. McGill, W. F. Stenson, S. B. Racette, J. Bateman, T. B. McPherson, R. E. Ostlund. Fat-free foods supplemented with soy stanol-lecithin powder reduce cholesterol absorption and LDL cholesterol. Journal of the American Dietetic Association, 103 (5), 577-581 (2003).
7. H. Chen, H. W. Ho, C. F. Chang, S. T. Wang, T. F. Fang. Soy isoflavone-phosphate conjugates derived by cultivating
Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Research International, 53 (1), 487-495 (2013).
8. J. J. Kim, S. H. Kim, S. J. Hahn, I. M. Chung. Changing
soybean isoflavone composition and concentrations under
two different storage conditions over three years. Food
Research International, 38 (4), 435-444 (2005).
9. T. Izumi, M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, M. Kikuchi. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. Journal of Nutrition, 130 (7),
1695-1699 (2000).
10. Q. K. Wei, T. R. Chen, J. T. Chen. Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk. International Journal of Food Microbiology, 117 (1), 120-124 (2007).
11. C. Tsukamoto, S. Shimada, K. Igita, S. Kudou, M. Kokubun, K. Okubo, K. Kitamurat. Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. Journal of Agricultural and Food Chemistry, 43 (5), 1184-1192 (1995).
12. A. C. Eldridg, W. F. Kwolek. Soybean isoflavones: effect of environment and variety on composition. Journal of
Agricultural and Food Chemistry, 31 (2), 394-396 (1983).
13. H. J. Wang, P. A. Murphy. Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry, 42 (8), 1666-1673 (1994).
14. H. Wang, P. A. Murphy.Isoflavone composition of american
and Japanese soybeans in Iowa: Effects of variety, crop year,and location. Journal of Agricultural and Food Chemistry, 42 (8), 1674-1677 (1994).
15. P. Albertazzi, D. W. Purdie. The nature and utility of the phytoestrogens: a review of the evidence. Maturitas, 42 (3), 173-185 (2002).
16. J. L. Penalvo, T. Nurmi, H. Adlercreutz. A simplified HPLC method for total isoflavones in soy products. Food Chemistry, 87 (2), 297-305 (2004).
17. T. H. Kao, B. H. Chen. Functional components in soybean
cake and their effects on antioxidant activity. Journal of
Agricultural and Food Chemistry, 54 (20), 7544-7555 (2006).
18. J. S. Park, M. S. Woo, D. H. Kim, J. W. Hyun, W. K. Kim, J. C. Lee, H. S. Kim. Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide-stimulated microglial cells.The Journal of Pharmacology and Experimental Therapeutics, 320 (3), 1237-1245 (2007).
19. K. T. Papazisis, T. G. Kalemi, D. Zambouli, G. D.
Geromichalos, A. F. Lambropoulos, A. Kotsis, L. L. Boutis, A. H. Kortsaris. Synergistic effects of protein tyrosine kinase inhibitor genistein with camptothecins against three cell lines in vitro. Cancer Letters, 233 (2), 255-264 (2006).
20. D. F. Ma, L. Q. Qin, P. Y. Wang, R. Katoh. Soy isoflavone intake increases bone mineral density in the spine of menopausal women: meta-analysis of randomized controlled trials. Clinical Nutrition, 27 (1), 57-64 (2008).
21. A. L. Ososki, E. J. Kennelly. Phytoestrogens: a review of the present state of research. Phytotherapy Research, 17 (8), 845-869 (2003).
22. S. Yamabe, K. K. Hattory, K. Kazuo,E. Endo, T. Takita. Effect of soybean varieties on the content and composition of isoflavone in rice-koji miso. Food Chemistry, 100 (1), 369-374 (2007).
23. D. D. Danyetta, S. Landini, Y. W. Kim, R. W. Brueggemeier. Evaluation of synthetic isoflavones on cell proliferation, estrogen receptor binding affinity, and apoptosis in human breast cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 108 (1-2), 23-31 (2008).
24. T. Clavel, M. Fallani, P. Lepage, F. Levenez, J. Mathey, V. Rochet, M. Serezat, M. Sutren, G. Henderson, C. B. Pelissero, F. Tondu, M. Blaut, J. Dore, V. Coxam. Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. The Journal of Nutrition, 135 (12), 2786-2792 (2005).
25. M. Naim, B. Gestetner, S. Zilkah, Y. Birk, A. Bondi. Soybean isoflavones. Characterization, determination, and antifungal activity. Journal of Agricultural and Food Chemistry, 22 (5), 806-810 (1974).
26. T. Zhang, Z. Wu, J. Du, Y. Hu, L. Liu, F. Yang, Q. Jin.
Anti-Japanese-encephalitis-viral effects of kaempferol and
daidzin and their RNA-binding characteristics. Plos One, 7 (1), e30259 (2012).
27. L. Zhang, A. K. Pan Siu, G. Lin, Z. Zuo. Intestinal
absorbability of three Radix Puerariae isoflavones including
daidzein, daidzin and puerarin. Chinese Medicine, 6 (41)
(2011).
28. D. H. Kim, H. A. Jung, S. J. Park, J. M. Kim, S. Lee, J. S. Choi, J. H. Cheong, K. H. Ko, J. H. Ryu. The effects of daidzin and its aglycon, daidzein, on the scopolamine-induced memory impairment in male mice. Archives of Pharmacal Research, 33 (10), 1685-1690 (2010).
29. S. H. Kim, J. H. Heo, Y. S. Kim, S. S. Kang, J. S. Choi, S. M. Lee. Protective effect of daidzin against D-galactosamine and lipopolysaccharide-induced hepatic failure in mice. Phytotherapy Research, 23 (5), 701-706 (2009).
30. E. D. Lowe, G. Y. Gao, L. N. Johnson, W. M. Keung. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde
dehydrogenase. Journal of Medicinal Chemistry, 51 (15),
4482-4487 (2008).
31. E. Meezan, E. M. Meezan, K. Jones, R. Moore, S. Barnes, J. K. Prasain. Contrasting effects of puerarin and daidzin on glucose homeostasis in mice. Journal of Agricultural and
Food Chemistry, 53 (22), 8760-8767 (2005).
32. X. H. Li, J. C. Zhang, S. F. Sui, M. S. Yang. Effect of daidzin,
genistin, and glycitin on osteogenic and adipogenic
differentiation of bone marrow stromal cells and adipocytic
transdifferentiation of osteoblasts. Acta Pharmacologica
Sinica, 26 (9), 1081-1086 (2005).
33. H. Isoda, T. P. Talorete, M. Kimura, T. Maekawa, Y. Inamori, N. Nakajima, H. Seki. Phytoestrogens genistein and daidzin enhance the acetylcholinesterase activity of the rat
pheochromocytoma cell line PC12 by binding to the estrogen
receptor. Cytotechnology, 40 (1-3), 117-123 (2002).
34. M. K. Choo, E. K. Park, H. K. Yoon, D. H. Kim. Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora. Biological &; Pharmaceutical Bulletin, 25 (10), 1328-1332 (2002).
35. T. Uesugi, T. Toda, K. Tsuji, H. Ishida. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. Biological &; Pharmaceutical Bulletin, 24 (4), 368-372(2001).
36. K. Kato, S. Takahashi, L. Cui, T. Toda, S.Suzuki, M. Futakuchi, S. Sugirura, T. Shirai. Suppressive effects of dietary genistin and daidzin on rat prostate Carcinogenesis. Journal of Japanese Cancer Association, 91, 786-791 (2000).
37. Y. J. Xiong, D. P. Chen, B. C. Lv, F. F. Liu, L. Wang, Y. Lin.The characteristics of genistin-induced inhibitory effects on intestinal motility. Archives of Pharmacal Research, 36 (3), 345-352 (2013).
38. S. M. Hamdy, A. K. Latif, E. A. Drees, S. M. Soliman.
Prevention of rat breast cancer by genistin and selenium.
Toxicology and Industrial Health, 28 (8), 746-757 (2012).
39. S. Hooshmand, D. A. Khalil, G. Murillo, K. Singletary, S. K. Kamath, B. H. Arjmandi. The combination of genistin and ipriflavone prevents mammary tumorigenesis and modulates
lipid profile. Clinical Nutrition, 27 (4), 643-648 (2008).
40. E. J. Choi, T. Kim, M. S. Lee. Pro-apoptotic effect and
cytotoxicity of genistein and genistin in human ovarian cancer SK-OV-3 cells. Life Sciences, 80 (15), 1403-1408 (2007).
41. A. Russo, V. Cardile, L. Lombardo, L. Vanella, R. Acquaviva. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. The Journal of Nutritional Biochemistry, 17 (2), 103-108 (2006).
42. M. J. Chung, A. Y. Kang, K. M. Lee, E. O, H. J. Jun, S. Y. Kim, J. H. Auh, T. W. Moon, S. J. Lee, K. H. Park. Water-soluble genistin glycoside isoflavones up-regulate antioxidant metallothionein expression and scavenge free radicals. Journal of Agricultural and Food Chemistry, 54 (11), 3819-3826 (2006).
43. T. Kojima, T. Uesugi, T. Toda, Y. Miura, K. Yagasaki.
Hypolipidemic action of the soybean isoflavones genistein
and genistin in glomerulonephritic rats. Lipids, 37 (3),
261-265 (2002).
44. S. Tang, J. Hu, Q. Meng, X. Dong, K. Wang, Y. Qi, C. Chu, X. Zhang, L. Hou. Daidzein induced apoptosis via
down-regulation of Bcl-2/Bax and triggering of the
mitochondrial pathway in BGC-823 cells. Cell Biochemistry
and Biophysics, 65 (2), 197-202 (2013).
45. S. G. Seo, H. Yang, S. H. Shin, S. Min, Y. A. Kim, J. G. Yu, D. E. Lee, M. Y. Chung, Y. S. Heo, J. Y. Kwon, S. Yue, K. H. Kim, J. X. Cheng, K. W. Lee, H. J. Lee. A metabolite of daidzein, 6,7,4'-trihydroxyisoflavone, suppresses adipogenesis in PT3-L1 preadipocytes via ATP-competitive inhibition of PI3K. Molecular Nutrition &; Food Research, 57 (8), 1446-1455 (2013).
46. M. H. Park, J. W. Ju, M. J. Park, J. S. Han. Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice. European Journal of Pharmacology, 712 (1-3), 48-52 (2013).
47. H. J. Park, Y. K. Jeon,D. H. You, M. J. Nam. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells. Food and Chemical Toxicology,
60, 542-549 (2013).
48. R. C. Choi, J. T. Zhu, A. W. Yung, P. S. Lee, S. L. Xu, A. J. Guo, K. Y. Zhu, T. T. Dong, K. W. Tsim. Synergistic action of flavonoids, baicalein, and daidzein in estrogenic and neuroprotective effects: a development of potential health products and therapeutic drugs against alzheimer's disease. Evidence-based Complementary and Alternative Medicine : eCAM, 1-10 (2013).
49. L. Sosvorova, P. Miksatkova, M. Bicikova, N. Kanova, O.
Lapcik. The presence of monoiodinated derivates of daidzein
and genistein in human urine and its effect on thyroid gland
function. Food and Chemical Toxicology, 50 (8), 2774-2779
(2012).
50. Y. Zhang, Q. Li, D. Zhou, H. Chen. Genistein, a soya
isoflavone, prevents azoxymethane-induced up-regulation of
WNT/beta-catenin signalling and reduces colon
pre-neoplasia in rats. The British Journal of Nutrition, 109 (1), 33-42 (2013).
51. T. Zhang, F. Wang, H. X. Xu, L. Yi, Y. Qin, H. Chang, M. T. Mi, Q. Y. Zhang. Activation of nuclear factor erythroid 2-related factor 2 and PPARgamma plays a role in the
genistein-mediated attenuation of oxidative stress-induced
endothelial cell injury. The British Journal of Nutrition, 109 (2), 223-235 (2013).
52. H. P. Zhang, F. L. Zheng, J. H. Zhao, D. X. Guo, X. L. Chen. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and
MCP-1 expression of HUVECs through heme oxygenase-1.
Archives of Medical Research, 44 (1), 13-20 (2013).
53. P. Chen, M. D. Hu, X. F. Deng, B. Li. Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy. Asian Pacific Journal of Cancer Prevention, 14 (2), 759-764 (2013).
54. E. Algar. , F. J. Gutierrez- Manero, A. G. Villaraco, D. G. Seco, J. A. Lucas, B. R. Solano. The role of isoflavone metabolism
n plant protection depends on the rhizobacterial MAMP that
triggers systemic resistance against Xanthomonas
axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi.
Plant Physiology and Biochemistry, 82, 9-16 (2014).
55. C. S. Kwak, M. S. Lee, S. C. Parkc. Higher antioxidant
properties of Chungkookjang, a fermented soybean paste,
may be due to increased aglycone and malonylglycoside
isoflavone during fermentation. Nutrition Research, 27 (11),
719-727 (2007).
56. A. Kazi, K. G. Daniel, D. M. Smith, N. B. Kumar, Q. P. Dou. Inhibition of the proteasome activity, a novel mechanism
associated with the tumor cell apoptosis-inducing ability of
genistein. Biochemical Pharmacology, 66 (6), 965-976
(2003).
57. J. Y. Han, J. Im, J. N. Choi, C. H. Lee, H. J. Park, D. K. Park, C. H. Yun, S. H. Han. Induction of IL-8 expression by Cordyceps militaris grown on germinated soybeans through
lipid rafts formation and signaling pathways via ERK and JNK
in A549 cells. Journal of Ethnopharmacology, 127 (1), 55-61
(2010).
58. Y. Feng, Y. Shao, F. Chen. Monascus pigments. Applied
Microbiology and Biotechnology, 96, 1421-1440 (2012).
59. M. Carels, D. Shepherd. Sexal reproductive cycle of
Monascus in submerged shaken culture. Journal of
Bacteriology, 122 (1), 288-294 (1975).
60. P. Patakova. Monascus secondary metabolites: production
and biological activity. Journal of Industrial Microbiology
Biotechnology, 40 (2), 169-181 (2013).
61. Y. C. Su, J. J. Wang, T. T. Lin, T. M. Pan. Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. Journal of Industrial Microbiology &; Biotechnology, 30 (1), 41-46 (2003).
62. I. Besson, C. Creuly, J. B. Cros, C. Larroche. Pyrazine
production by Bacillus subtilis in solid-state fermentation on soybeans. Applied Microbiology and Biotechnology, 47 (5),
489-495 (1997).
63. A. J. Day, F. J. Canada, J. C. Diaz, P. A. Kroon, R.
McLauchlan, C. B. Faulds, G. W. Plumb, M. R. Morgan, G.
Williamson. Dietary flavonoid and isoflavone glycosides are
hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468 (2-3), 166-170 (2000).
64. R. Y. Chiou, S. L. Cheng. Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl. Journal of Agricultural and Food Chemistry, 49 (8), 3656-3660 (2001).
65. A. M. Hutchins, J. L. Slavin, J. W. Lampe. Urinary
isoflavonoid phytoestrogen and lignan excretion after
consumption of fermented and unfermented soy products.
Journal of the American Dietetic Association, 95 (5), 545-551(1995).
66. T. B. Clarkson, M. S. Anthony, C. L. Hughes. Estrogenic
soybean isoflavones and chronic disease Risks and benefits.
Trends in Endocrinology and Metabolism, 6 (1), 11-16 (1995).
67. F. Lin, M. M. Giusti. Effects of solvent polarity and acidity on the extraction efficiency of isoflavones from soybeans (Glycine max). Journal of Agricultural and Food Chemistry, 53 (10), 3795-3800 (2005).
68. P. Lewis, S. Kaltia, K. Wahala. The phase transfer catalysed synthesis of isoflavone-O-glucosides. Journal of the American Chemical Society, 1, 2481-2484 (1998).
69. A. Caligiani, G. Palla, A. Maietti, M. Cirlini, V. Brandolini. 1H NMR fingerprinting of soybean extracts, with emphasis on identification and quantification of isoflavones. Nutrients, 2, 280-289 (2010).
70. A. Kanakubo, K. Koga, M. Isobe, T. Fushimi, T. Saitoh, Y. Ohshima, Y. TsuKamoto. First finding of Daidzein
7-O-phosphate and Genistein 7-O-phosphate that are
hydrolyzed by sulfatase. Tetrahedron, 57 (42), 8801-8805
(2001).
71. S. Kudou, Y. Fleury, D. Welti, D. Magnolato, T. Uchida, K. Kitamura, K. Okubo. Malonyl isofiayone glycosides in
soybean seeds (Glycine max Merrill). Agricultural and
Biological Chemistry, 55 (9), 2227-2233 (1991).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊