跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠綸
研究生(外文):Kuan-Lun Huang
論文名稱:CMOS整合式光對三角積分調變器之設計
論文名稱(外文):Design of A CMOS Monolithic Light to Sigma-Delta Modulator
指導教授:江政達江政達引用關係章定遠
指導教授(外文):Cheng-Ta ChiangDin-Yuen Chan
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:三角積分調變器光傳感器可變增益放大器前端放大器
外文關鍵詞:Sigma-delta modulatorlight sensorPGApreamplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
CMOS整合式光對三角積分調變器(Sigma-delta modulator, SDM)為本論文提出之光傳感器,將類比處理電路與光感應器成功地整合成積體電路,能應用在環境監控。晶片的輸出訊號為一位元的脈波串列訊號,優點是可以在寬範圍的傳輸媒介傳送。另外一個優點是藉由電路特性,低頻的光雜訊容易地被移動到頻寬以外。本晶片採用TSMC 0.35 µm 2P4M CMOS標準製程,晶片面積1.998 × 1.616 mm2,傳感器每個區塊的功能與效能,成功地通過SPICE的模擬與驗證。經由量測,光傳感器可接受的照度範圍從15.5 Lux到2650 Lux,整體電路在62.5倍的超取樣率與20 kHz的頻寬下,最大SNDR為73.5 dB;在電源電壓3 V下,總功率消耗43.3 mW。為了實現車用安全距離監控之目的,準備車尾裝有LED燈的模型車模擬倒車的環境,並將凸透鏡固定在晶片前面產生聚光的作用。當車尾的LED燈靠近晶片,接受的照度愈大而SNDR也愈高;反之,若模型車遠離晶片, SNDR愈小。藉由觀察SNDR的變化來安全計算距離,以達到安全距離監控之目的。
The analog processing circuits and the light sensor are integrated into a chip that can be used in environmental monitoring. The output signal of the proposed chip is pulse stream, it could be easily sent over a wide range of transmission media. Another innovation is that the light noise at low frequency band can be easily removed into high frequency band by following the characteristics of the proposed chip. Based upon the device parameters of 0.35 µm 2P4M CMOS technology with 3.0 V power supply, all the functions and performance of the proposed chip are successfully tested and proven through SPICE simulations. The proposed chip is accepted range of illuminance from 15.5 Lux to 2650 Lux. The OSR is 62.5 and the bandwidth is 20 kHz, the peak SNDR of whole circuits could be achieved 73.5 dB. The chip area is 1.998 × 1.616 mm2. In order to accomplish the desired of stopping distance monitoring, the model car with LED tail light is prepared for modeling the car-backing environment, and the convex lens is fixed front the proposed chip to focus light. Because SNDR vary with distance, it could be achieved stopping distance monitoring by calculating the SNDR.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 背景 1
1.2 動機 5
1.3 論文組織 6
第二章 架構與電路設計 7
2.1 類比前端電路 8
2.1.1 光對電壓轉換器(Light to voltage converter) 8
2.1.2 增益選擇器(Gain selector) 8
2.1.3 可變增益放大器(Programmable gain amplifier) 9
2.1.4 前端放大器(Preamplifier) 10
2.2 三角積分調變器之理論 10
2.2.1 奈奎斯特取樣理論 10
2.2.2 量化雜訊(Quantization noise) 12
2.2.3 超取樣技術(Oversampling) 15
2.2.4 雜訊重整技術(Noise shaping) 17
2.2.5 一階三角積分調變器 18
2.2.6 二階三角積分調變器 20
2.2.7 高階三角積分調變器 21
2.2.8 分散回授架構 22
2.2.9 前饋架構 23
2.2.10 性能衡量標準 24
2.3 三角積分調變器之電路設計與實現 25
第三章 光對三角積分調變器之設計與模擬 30
3.1 光對電壓轉換器之模擬 30
3.2 增益選擇器之模擬 31
3.3 可變增益放大器之模擬 32
3.4 前端放大器之模擬 33
3.5 三角積分調變器之模擬 34
3.6 全晶片之模擬 36
3.7 電路後模擬 37
3.7.1 三角積分調變器之後模擬 37
3.7.2 全電路後模擬 38
3.8 模擬總結 40
第四章 電路佈局與量測結果 42
4.1 電路佈局 42
4.2 量測環境 44
4.2.1 電源穩壓電路 44
4.2.2 量測儀器 46
4.3 量測結果 48
4.3.1 光對電壓轉換器 48
4.3.2 增益選擇器 48
4.3.3 可變增益放大器 50
4.3.4 前端放大器 52
4.3.5 三角積分調變器 53
4.3.6 全晶片量測 55
4.4 量測總結 56
4.5 晶片應用 57
第五章 緒論 59
參考文獻 60
[1] R. Krenzke and C. Ji, “A 140dB equivalent dynamic range receiver interface for an infrared rain-sensing IC,” in Proc. of ESSCIRC’11, pp. 123-126, 2011.
[2] J. Nakamura, B. Pain, T. Nomoto, T. Nakamura, and E. R. Fossum, “On-focal-plane signal processing for current-mode active pixel sensors,” IEEE Transactions on Electron Devices, vol. 44, no. 10, pp. 1747-1758, October 1997.
[3] C. Bäumer and etc., “Design and evaluation of a CMOS-photosensor with in-pixel sigma-delta modulator for X-ray computed tomography” in Proc. of ESSCIRC’06, pp. 432-435, 2006.
[4] A. V. Fernandes, V. F. Cardoso, J. G. Rocha, J. Cabral, and G. Minas, “Smart-optical detector CMPS array for biomedical parameters analysis in physiological fluids,” IEEE Transactions on Industrial Electronics, vol. 55, no. 9, pp. 3192-3200, Sep. 2008.
[5] Y. Perelman and R. Ginosar, “A low-light-level sensor for medical diagnostic applications,” IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1553-1558, Oct. 2001.
[6] B.L. Shoop, J.W. Goodman, “High resolution optical A/D conversion using oversampling and interpolative coding,” in Proc. of Signals, Systems and Computers, pp. 613-617, 1991.
[7] D. Yap and H. T. Jensen, “Optically sampled delta-sigma modulator,” U.S.A. Patent 6781533 B2, 2004.
[8] Nan Liu, Zhiliang Hong, and Ran Liu, “A CMOS Detector system for fluorescent bio-sensing application,” IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 333–336, 2008.
[9] J.H. Correia, G.D Graaf, M. Bartek, and R.F. Wolffenbuttel, “A Single-Chip CMOS Optical Microspectrometer with Light-to-Frequency Converter and Bus Interface,” IEEE Journal of Solid-State Circuits, vol. 37, no. 10, pp. 1344 –1347, 2002.
[10] M. Chevroulet, ”Method and device for controlling the backlighting of flat screen”, U.S.A. Patent 0015542 A1, 2009.
[11] J. H. Jang, M. Kwon, E. Tjandranegara, K. Lee and B. Jung, “A PDM-Based Digital Driving Technique Using Delta-Sigma Modulation for QVGA Full-Color AMOLED Display Applications”, Journal of Display Technology, vol. 6, no. 7, pp. 269-278, July 2010.
[12] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005.
[13] A. Kanhe, B. Acharya and R.B. Deshmukh, "Design and Implementation of the Low Power 0.64 mW, 380 KHz Continuous Time Sigma Delta ADC, " International Conference on Emerging Trends in Engineering and Technology (ICETET), pp. 280–283, 2011.
[14] S. Hua, H. Yan, Y. Liu, D. Wang and C. Hou, "A continuous time sigma-delta modulator using time-domain quantizer and feedback element," IEEE 9th International Conference on ASIC (ASICON), pp. 457–460, 2011.
[15] J. Raman, P. Rombouts, L. Weyten, "An unconstrained architecture for systematic design of higher order sigma delta force-feedback loops," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, pp. 1601-1614, 2008.
[16] W. Lei, Y. Taotao, M. Tingting and M. Cui, "A 14-b 2MSPS Low Power Sigma-Delta ADC Using Feed-Forward Structure," in Proc. of Third International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), vol. 1, pp. 3-5, 2011.
[17] Y. Chen, "Design of A Low-Power-Consumption and High-Performance Sigma-Delta Modulator," in Proc. of WRI World Congress on Computer Science and Information Engineering, vol. 3, pp. 375–379, 2009.
[18] C. Y. Zhu, Y. Zhang, W. Ma, H. Xiaop, H. Liu and J. He, "An 88dB 48 KHz full feed-forward sigma-delta modulator," Asia Pacific Conference on Postgraduate Research in Microelectronics &; Electronics, pp. 329–332, 2009.
[19] F. Gerfers, K. M. Soh, M. Ortmanns, and Y. Manoli, “Figure of merit based design strategy for low-power continuous-time ΣΔ modulators,” Proc. IEEE Int. Symp. Circuits Syst. vol.4, pp. 233–236, Agu. 2002.
[20] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top