跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 00:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王鵬翰
研究生(外文):Peng-Han Wang
論文名稱:“類C4水稻遺傳工程”:在水稻葉綠體表達玉米磷酸烯醇式丙酮酸羧激酶以提高CO2促進光合作用
論文名稱(外文):Engineering of "C4-like rice”: Expression of maize phosphoenolpyruvate carboxykinase (PCK) in rice mesophyll chloroplast for increased supply of CO2 and photosynthesis
指導教授:古森本
指導教授(外文):Maurice S.B. Ku
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生物農業科技學系研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
畢業學年度:102
語文別:中文
論文頁數:121
中文關鍵詞:玉米磷酸烯醇式丙酮酸羧激酶C4光合作用類C4水稻水稻產量
外文關鍵詞:Maize phosphoenolpyruvate carboxykinase (PCK)C4 photosynthesisC4-like ricerice productivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
未來50年世界人口將持續上升,糧食不足將是一個相當嚴重的問題,三大主要作物之一的水稻(Oryza sativa)屬於C3植物,其光合作用受到氧的抑制,大幅降低光合作用和生長速率;相較之下,C4植物演化出二氧化碳濃縮機制(CCM)來提高葉部中的二氧化碳濃度,以抑制氧的抑制作用而提升光合作用與生長效率。本實驗室的最主要目標是想將C4植物(如玉米)與CCM有關的基因表達在水稻中,期望能提高水稻的光合效率和產能。
為了提高水稻的光合作用以及生產力,本實驗室已先後將藍綠藻的Inorganic carbon transporter (ictB) (Yang, 2007)、玉米的phosphoenolpyruvate carboxylase (PEPC) (H.L. Chou, unpublished results)與phosphoenolpyruvate carboxykinase (PCK) (Huang, 2008),分別轉殖到水稻中,並將這些基因藉由雜交同時表現在水稻中(ictBxPEPC or IP;Yang, 2011),但PCK在轉殖水稻的表現量與C4植物比較仍然偏低(Huang, 2008),可能限制C4循環。因此本試驗的主要目標在於增加PCK酵素在水稻葉綠體中的表現量,主要策略為更換PCK基因的啟動子,使用單子葉植物常用的Ubiquitin啟動子並包含一段自身的intron-1。期望藉由這個策略能大幅提升玉米PCK基因的表現,並透過PCK cDNA融合一段番茄的rbcS3C訊息胜肽的核酸序列將PCK蛋白質輸送到葉綠體。試驗利用二個IP的同型結合轉殖雜交水稻品系為材料進行轉殖(所表達的玉米PEPC活性分別為1.5x與3x),期望同時表達三種與CCM有關的基因以求在葉肉細胞內提高二氧化碳濃度。本試驗一共獲得IP(1.5x)/PCK 13個品系和IP(3x)/PCK 10個品系,本試驗後續的分析主要利用表達PCK較高的IP(1.5x)/PCK品系來完成。首先經由西方墨點法初步篩選出表達PCK蛋白較高的轉殖株,再藉由南方墨點法得知轉殖株的拷貝數(1-5拷貝數),再以Real-time PCR分析PCK RNA的表現量,西方墨點法分析結果顯示有些轉殖株葉片的PCK蛋白含量遠高於玉米及未轉殖水稻,而且主要累積於葉綠體;酵素活性分析也發現轉殖株的PCK活性大約是玉米的1.5~6倍,較高的表現可能與較強的啟動子之使用與基因的拷貝數多寡有關。表達PCK最多的二個第一代轉殖品系葉片之13C含量(-28.13‰ 和 -27.69‰),略高於未轉殖水稻(-28.77‰),但仍遠低於玉米的含量(-12.5‰),推測轉殖株有進行C4 cycle 的功能。農藝性狀上,溫室的生長分析結果顯示相較於未轉殖水稻,表達PCK最高的第三代轉植株較矮小(15%),但卻有較多的分櫱數及穗數,有些轉殖株的地上部乾物重和穗重也略高於未轉殖水稻,但呈現很大的分離性狀,可能與轉殖的玉米PCK基因的高拷貝數有關。至於PCK的表達對水稻光合生理與生長的影響需要進一步利用同型結合的轉殖株進行深入研究。
Overpopulation is projected in the next forty years, and food shortage presents a big challenge to plant biologists. Current rice production capability will not be able to meet the needs in the future. The major objective of this study was to create a C4-like CO2 concentration mechanism (CCM) in rice mesophyll cells by expressing C4-related maize genes to increase its photosynthetic efficiency and productivity. In our laboratory, transgenic rice lines overexpressing cyanobacterial inorganic carbon transporter (ictB) (Yang, 2007) and maize C4-specific phosphoenolpyruvate carboxylase (PEPC) (H.L. Chou, unpublished results) and phosphoenolpyruvate carboxykinase (PCK) (Huang, 2008) have been generated independently or in combination (ictBxPEPC or IP; Yang, 2011) with the ultimate goal of forming a functional C4-like cycle in the rice mesophyll cells, using PCK for C4 acid decarboxylation. However, the expression level of the maize PCK cDNA in transgenic rice obtained previously was low (Huang, 2008). Thus, the main goal of this study was to increase the expression level of PCK in transgenic rice by using the strong promoter of ubiquitin gene and its intron-1. Phosphoenolpyruvate carboxykinase (PCK) is a C4-acid decarboxylation enzyme located in the cytosol of bundle sheath cells of PCK and some NADP-ME subtype C4 plants (eg., maize). In this study, a maize PCK cDNA was cloned by PCR and introduced into the genome of IP transgenic hybrid rice via Agrobacterium-mediated transformation with the PCK enzyme targeted to the mesophyll chloroplast by linking the gene to tomato rbcS3C transit peptide sequence. Direct decarboxylation of oxaloacetate in the chloroplast is expected to raise the CO2 concentration in the leaves. Two transgenic hybrid rice lines that express the maize PEPC activities at 1.5 [IP(1.5x)] or 3 fold [IP(3x)] maize PEPC activity were used for transformation.
A total of 13 lines of IP(1.5x)/PCK and 10 lines of IP(3x)/PCK transgenic rice were obtained for characterization. High PCK expression transgenic lines were initially screened by western blot, and Southern blot analysis confirmed the integration of the maize PCK gene at 1-5 copies in the genome of these transgenic rice plants. Real-time PCR and western blot analysis showed the maize PCK protein is expressed at levels higher than that in maize in some lines. The leaf activities of PCK in these transgenic rice plants ranged from 1.5-6 fold higher than that in maize. High level expression maybe attributed to a combination of the use of a strong promoter to drive its expression and the high copy number of the maize PCK gene introduced. Western blot study with isolated chloroplasts indicated that PCK is located accumulated in the chloroplasts. Leaf 13C content analysis showed that the T1 plants of PCK transgenic lines IP(1.5x)/PCK Line 7-1-8 and Line 7-1-10 that express PCK at high levels (5 copies of PCK) (-28.13‰ and -27.69‰, respectively) have slightly higher (less discriminated) 13C contents, as compared to that of WT (-28.77‰). The results suggest that these transgenic rice lines maybe capable of operating a limited C4 cycle. In general, the T2 plants, derived from these two Lines grown in the greenhouse, were shorter in stature (reduced by 15%) but produced more tillers and panicles per plant (up to 200%), compared to WT and IP. The most significant difference was in tiller number and panicle number per plant, except for Line 7-1-8-9 and Line 7-1-10-4, which had comparable tiller/panicle number to WT. On a per plant basis, some T3 transgenic rice lines had higher panicle weight and total above-ground biomass than WT, but lower than IP. Further study is needed to characterize the effect of increased maize PCK on the photosynthetic physiology and growth of IP/PCK transgenic rice plants using homozygous plants.
Abstract i
中文摘要 iii
致謝辭(Acknowledgements) v
Abbreviations vi
Table of contents vii
List of Figures x
List of Tables xii
Introduction 1
1. Evolution of photosynthetic mechanisms 1
2. C3 photosynthesis 2
3. C4 photosynthesis 5
4. The three biochemical subtypes of C4 photosynthesis 6
5. CAM photosynthesis 7
6. Comparison of C3 and C4 photosynthesis 8
7. CCM in some special C4 plants within a single mesophyll cell in the leaves 9
8. Genetic engineering for improving C3 photosynthesis 10
9. Expression of key C4 photosynthesis genes in C3 plants 13
9.1. Overexpression of HCO3- transporter: cyanobacterial inorganic carbon transporter B (ictB) 13
9.2. Overexpression of CO2 hydration enzyme: carbonic anhydrase (CA) 14
9.3. Overexpression of C4 carboxylation enzyme: Phosphoenolpyruvate carboxylase (PEPC) 14
9.4. Overexpression of PEP regeneration enzyme: pyruvate orthophosphate dikinase (PPDK) 16
9.5. Overexpression of malate decarboxylation enzyme: NADP-malic enzyme (NADP-ME) 17
9.6. Overexpression of oxaloacetate decarboxylation enzyme: Phosphoenolpyruvate carboxykinase (PCK) 18
10. Overexpression of multiple C4 enzymes 22
11. The major objective of this study 23
Materials and Methods 25
1. Plant material and growth conditions 25
2. Cloning of maize PEP carboxykinase gene (ZmPCK) and construction of transformation vector 26
2.1. Cloning of ZmPCK and vector construction 26
2.2. Plasmid DNA mini-preparation 27
2.3. E. coli transformation 27
2.4. Screening of E. coli transformants 27
2.5. Polymerase Chain Reaction (PCR) 28
2.6. Agrobacterium transformation 29
2.7. Screening of Agrobacterium transformants 29
3. Rice transformation and regeneration of transgenic rice 30
4. Molecular analysis 31
4.1. Extraction of genomic DNA 31
4.2. Extraction of total RNA 31
4.3. Southern blot analysis 32
4.4. Reverse transcriptase-polymerase chain reaction (RT-PCR) 34
4.5. Analysis of mRNA quantity by real-time PCR (qPCR) 35
5. Analysis of gene expression at protein level 39
5.1. Total protein extraction from rice tissues 39
5.2. Bradford assay for protein concentration 39
5.3. Denaturing sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 39
5.4. Transfer of protein onto PVDF membrane by electroblotting 40
5.5. Immunodetection 41
6. Enzyme activity assay 42
6.1. Enzyme assay for PEPC 42
6.2 Enzyme assay for PCK 43
7. Purification of chloroplasts from rice 44
8. Leaf 13C content analysis 45
9. Agronmoic analysis of T2 transgenic plants 45
Results 46
1. Cloning, vector construction and rice transformation 46
1.1. Confirmation of maize PCK cDNA in the transformation vector 46
1.2. Trnsformation of IP transgenic hybrid with pZmPCK/UN/SYM1B 52
2. Molecular analysis 54
2.1. PCR analysis of rice genomic DNA in T0 IP(1.5x)/PCK and IP(3x) /PCK transgenic plants 54
2.2. Determination of transgene copy by Southern hybridization 55
2.3. Detection of leaf PCK and PEPC proteins by western immune-blot analysis 56
2.4. Analysis of maize leaf PCK mRNA quantity by real-time PCR 61
3. Enzyme activity analysis 65
3.1. Leaf PEPC activities in T0 IP(1.5x)/PCK transgenic rice plants 65
3.2. Leaf PCK activities in the T2 plants of IP(1.5x)/PCK transgenic rice lines 67
4. Organ-specific expression of PCK and PEPC in the leves of T3 IP(1.5x)/PCK transgenic rice plants 69
5. Localization of PCK in the leaves of IP(1.5x)/PCK transgenic rice plant 70
6. Leaf δ13C contents of the T2 plants of IP(1.5x)/PCK transgenic Line 7-1 71
7. Agronomic traits of IP(1.5x)/PCK transgenic rice 72
8. Photosynthetic rates of T3 IPK transgenic plants 75
Discussion 77
Agrobacterium-mediated genetic transformation and screening of transgenic plants 78
Integration and expression of ZmPCK gene in transgenic rice 80
Organ-specificity of PCK expression and Localization of PCK in the leaves 82
Photosynthetic discrimination against 13C 82
Agronomic traits 83
Photosynthetic performance 84
Conclusion 86
References 88
Appendix 96
Appendix 1. The primers used in this study. 96
Appendix 2. The formula of rice transformation media. 97
Appendix 3. Media used for purification of plasmid DNA and electroporation. 103
Appendix 4. Reaction mixture for enzyme activity analysis. 105
Appendix 5. Preparation of SDS gels. 107
Appendix 6. Solutions for electrophoretic blotting. 107
Agarie S., Miura A., Sumikura R., Tsukamoto S., Nose A., Arima S., Matsuoka M. and Miyao-Tokutomi, M. (2002). Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plants. Plant Sci., 162(2), 257-265.
Andersson, I. and Taylor, T. C. (2003). Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys., 414(2), 130-140.
Badger, M. R. and Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot., 54(383), 609-622.
Bauwe, H. and Kolukisaoglu, U. (2003). Genetic manipulation of glycine decarboxylation. J. Exp. Bot., 54(387), 1523-1535.
Black, C. C. (1973). Photosynthetic carbon fixation in relation to net CO2 uptake. Ann. Rev. Plant Physiol., 24(1), 253-286.
Boldt, R., Edner, C., Kolukisaoglu, U., Hagemann, M., Weckwerth, W., Wienkoop, S., Morgenthal K. and Bauwe, H. (2005). D-Glycerate 3-kinase, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family. Plant Cell, 17(8), 2413-2420.
Bonfil, D. J., Ronen-Tarazi, M., Sultemeyer, D., Lieman-Hurwitz, J., Schatz, D. and Kaplan, A. (1998). A putative HCO3- transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett., 430(3), 236-240.
Bowes, G., Rao, S. K., Estavillo, G. M. and Reiskind, J. B. (2002). C4 mechanisms in aquatic angiosperms: comparisons with terrestrial C4 systems. Funct. Plant Biol., 29(3), 379-392.
Boykin, L. M., Pockman, W. T. and Lowrey, T. K. (2008). Leaf anatomy of Orcuttieae (Poaceae: Chloridoideae): More evidence of C4 photosynthesis without Kranz anatomy. Madroño, 55(2), 143-150.
Brown, R. H. and Bouton, J. H. (1993). Physiology and genetics of interspecific hybrids between photosynthetic types. Ann. Rev. Plant Physiol. Plant Mol. Bio., 44(1), 435-456.
Burnell, J. N. and Hatch, M. D. (1985). Light-dark modulation of leaf pyruvate, Pi dikinase. Trends in Biochem. Sci., 10(7), 288-291.
Callis, J., Fromm, M. and Walbot, V. (1987). Introns increase gene expression in cultured maize cells. Genes Dev., 1(10), 1183-1200.
Chan, M. T., Chang, H. H., Ho, S. L., Tong, W. F. and Yu, S. M. (1993). Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol. Biol., 22(3), 491-506.
Chang, Y. M., Liu, W. Y., Shih, A. C., Shen, M. N., Lu, C. H., Lu, M. Y., Yang, H. W., Wang, T. Y., Chen, S. C., Chen, S. M., Li, W. H. and Ku, M. S. B. (2012). Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol., 160(1), 165-177.
Chapman, K. S., Berry, J. A. and Hatch, M. D. (1980). Photosynthetic metabolism in bundle sheath cells of the C4 species Zea mays: Sources of ATP and NADPH and the contribution of photosystem II. Arch. Biochem. Biophys., 202(2), 330-341.
Chen, L. M., Li, K. Z., Miwa, T. and Izui, K. (2004). Overexpression of a cyanobacterial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta, 219(3), 440-449.
Chen, P. W., Chiang, C. M., Tseng, T. H. and Yu, S. M. (2006). Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of alpha-amylase genes. Plant Cell, 18(9), 2326-2340.
Chen, Z. and Spreitzer, R. J. (1992). How various factors influence the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynth. Res., 31(2), 157-164.
Chollet, R., Vidal, J. and O'Leary, M. H. (1996). Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 273-298.
Chunlai L., Yiqin W., Linchuan L., Yingchun H., Fengxia Z., Sod M., Guodong W., Michael R. S., and Chengcai, C. (2011). A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS. Genet., 7(7), e1002196.
Créach, E., Michel, J. P. and Thibault, P. (1974). Aspartic acid as an internal CO2 reservoir in Zea mays: Effect of oxygen concentration and of far-red illumination. Planta, 118(2), 91-100.
Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3(2–3), 53-92.
Dai, Z., Ku, M. S. B., Zhang, D. and Edwards, G. E. (1994). Effects of growth regulators on the induction of crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum L. Planta, 192(3), 287-294.
Donath, M., Mendel, R., Cerff, R. and Martin, W. (1995). Intron-dependent transient expression of the maize GapA1 gene. Plant Mol. Biol., 28(4), 667-676.
Drennan, P. M. and Nobel, P. S. (2000). Responses of CAM species to increasing atmospheric CO2 concentrations. Plant Cell Environ., 23(8), 767-781.
Edwards, E. J., Osborne, C. P., Stromberg, C. A., Smith, S. A., Consortium, C. G., Bond, W. J., Christin, P. A., Cousins, A.B., Duvall, M. R., Fox, D. L., Freckleton, R. P., Ghannoum, O., Hartwell, J., Hung, Y., Janis, C. M., Keeley, J. E., Kellogg, E. A., Knapp, A. D., Nelson, D. M., Saarela, J. M., Sage, R. F., Sala, O. E., Salamin, N., Still, C. J. and Tipple, B. (2010). The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science, 328(5978), 587-591.
Edwards, E. J., Still, C. J. and Donoghue, M. J. (2007). The relevance of phylogeny to studies of global change. Trends. Ecol. Evol., 22(5), 243-249.
Edwards, G. E., Kanai, R. and Black, C. C. (1971). Phosphoenolpyruvate carboxykinase in leaves of certain plants whick fix CO2 by the C4 -dicarboxylic acid cycle of photosynthesis. Biochem. Biophys. Res. Commun., 45(2), 278-285.
Edwards, G. E., Franceschi, V. R. and Voznesenskaya, E. V. (2004). Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Ann. Rev. Plant Biol., 55(1), 173-196.
Ehleringer, J. R. and Monson, R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Ann. Rev. Ecol. Syst., 24(1), 411-439.
Finnegan, P. M. and Burnell, J. N. (1995). Isolation and sequence analysis of cDNAs encoding phosphoenolpyruvate carboxykinase from the PCK-type C4 grass Urochloa panicoides. Plant Mol. Biol., 27(2), 365-376.
Fukayama, H., Tsuchida, H., Agarie, S., Nomura, M., Onodera, H., Ono, K., Lee, B. H., Hirose, S., Toki, S., Ku, M. S., Makino, A., Mastsuoka, M. and Miyao, M. (2001). Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol., 127(3), 1136-1146.
Furumoto, T., Hata, S. and Izui, K. (1999). cDNA cloning and characterization of maize phosphoenolpyruvate carboxykinase, a bundle sheath cell-specific enzyme. Plant Mol. Biol., 41(3), 301-311.
Gehlen, J., Panstruga, R., Smets, H., Merkelbach, S., Kleines, M., Porsch, P., Fladung, M., Becker, I., Rademacher, T., Häusler, R. E. and Hirsch, H. J. (1996). Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant Mol. Biol., 32(5), 831-848.
Gutierrez, M., Gracen, V. E. and Edwards, G. E. (1974). Biochemical and cytological relationships in C4 plants. Planta, 119(4), 279-300.
Häusler, R. E., Rademacher, T., Li, J., Lipka, V., Fischer, K. L., Schubert, S., Kreuzaler, F. and Hirsch, H. J. (2001). Single and double overexpression of C4-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J. Exp. Bot., 52(362), 1785-1803.
Häusler, R. E., Hirsch, H. J., Kreuzaler, F. and Peterhansel, C. (2002). Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J. Exp. Bot., 53(369), 591-607.
Hatch, M. D. (1971). The C4-pathway of photosynthesis. Evidence for an intermediate pool of carbon dioxide and the identity of the donor C4-dicarboxylic acid. Biochem. J., 125(2), 425-432.
Hatch, M. D. (1987) C4 photosynthesis: aunique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta. 895, 81-106.
Heineke, D., Bykova, N., Gardestrom, P. and Bauwe, H. (2001). Metabolic response of potato plants to an antisense reduction of the P-protein of glycine decarboxylase. Planta, 212(5-6), 880-887.
Hibberd, J. M., Sheehy, J. E. and Langdale, J. A. (2008). Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr. Opin. Plant Biol., 11(2), 228-231.
Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J., 6(2), 271-282.
Huang, Y. R. (2008) Genetic engineering of C4 rice: Expression of maize PCK in rice mesophyll chloroplast to raise CO2 concentration and photosynthesis. National Chiayi University Master thesis.
Ishimaru, K., Ichikawa, H., Matsuoka, M. and Ohsugi, R. (1997). Analysis of a C4 maize pyruvate, orthophosphate dikinase expressed in C3 transgenic Arabidopsis plants. Plant Science, 129(1), 57-64.
Ishimaru, K., Ohkawa, Y., Ishige, T., Tobias, D. J. and Ohsugi, R. (1998). Elevated pyruvate,orthophosphate dikinase (PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene. Physiol. Plant., 103(3), 340-346.
James, D. J., Uratsu, S., Cheng, J., Negri, P., Viss, P. and Dandekar, A. M. (1993). Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep., 12(10), 559-563.
Jiao, D., Huang, X., Li, X., Chi, W., Kuang, T., Zhang, Q., Ku, M. S. B. and Cho, D. (2002). Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth. Res., 72(1), 85-93.
Jordan, D. B. and Ogren, W. L. (1984). The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase : Dependence on ribulosebisphosphate concentration, pH and temperature. Planta, 161(4), 308-313.
Keeley, J. and Rundel, P. (2003). Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J. Plant Sci., 164(Suppl.3), S55-S77.
Keys, A. J., Bird, I. F., Cornelius, M. J., Lea, P. J., Wallsgrove, R. M. and Miflin, B. J. (1978). Photorespiratory nitrogen cycle. Nature, 275(5682), 741-743.
Khamis, S., Lamaze, T. and Farineau, J. (1992). Effect of nitrate limitation on the photosynthetically active pools of aspartate and malate in maize, a NADP malic enzyme C4 plant. Physiol. Plant., 85(2), 223-229.
Kim, D. J. and Smith, S. M. (1994). Molecular cloning of cucumber phosphoenolpyruvate carboxykinase and developmental regulation of gene expression. Plant Mol. Biol., 26(1), 423-434.
Ku, M. S. B., Gutierrez, M., Kanai, R. and Edwards, G. E. (1974). Photosynthesis in mesophyll protoplasts and bundle sheath cells of various types of C4 plants II. Chlorophyll and hill reaction studies. Z. Pflanzenphysiol., 72(4), 320-337.
Ku, M. S. B., Shieh, Y. J., Reger, B. J. and Black, C. C. (1981). Photosynthetic Characteristics of Portulaca grandiflora, a Succulent C4 Dicot : CELLULAR COMPARTMENTATION OF ENZYMES AND ACID METABOLISM. Plant Physiol., 68(5), 1073-1080.
Ku, M. S. B., Wu, J., Dai, Z., Scott, R. A., Chu, C. and Edwards, G. E. (1991). Photosynthetic and photorespiratory characteristics of flaveria species. Plant Physiol., 96(2), 518-528.
Ku, M. S. B., Kano-Murakami, Y. and Matsuoka, M. (1996). Evolution and expression of C4 photosynthesis genes. Plant Physiol., 111(4), 949-957.
Ku, M. S. B., Agarie, S., Nomura, M., Fukayama, H., Tsuchida, H., Ono, K., Hirose, S., Toki, S., Miyao, M. and Matsuoka, Makoto. (1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotech., 17(1), 76-80.
Ku, M. S. B., Cho D., Ranade, U., Hsu, T. P., Li X., Jiao, D. M., Ehleringer, J., Myiao, M. and Matsuoka, M. (2000). Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzyme, in Redesigning Rice Photosynthesis to Increase Yield (eds. Sheedy, J. E., Mitchell, P. H., Hardy, B.), Amsterdam: Elsevier Science Publishers, p. 193-204.
Ku, M. S. B., Cho, D., Li, X., Jiao, D. M., Pinto, M., Miyao, M. and Matsuoka, M. (2001). Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences. Novartis Found. Symp., 236, 100-111; discussion 111-106.
Leegood, R. C. (2002). C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J. Exp. Bot., 53(369), 581-590.
Leegood, R. C. and Walker, R. P. (2003). Regulation and roles of phosphoenolpyruvate carboxykinase in plants. Arch. Biochem. Biophys., 414(2), 204-210.
Lepiniec, L., Vidal, J., Chollet, R., Gadal, P. and Crétin, C. (1994). Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Science, 99(2), 111-124.
Lieman-Hurwitz, J., Rachmilevitch, S., Mittler, R., Marcus, Y. and Kaplan, A. (2003). Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3- accumulation in cyanobacteria. Plant Biotechnol. J., 1(1), 43-50.
Lin, P. C. (2013). Engineering of "C4-like rice": Expression of maize C4-specific carbonic anhydrase in rice leaves for increased supply of CO2 and photosynthesis. National Chiayi University Master thesis.
Liu, W. Y., Chang, Y. M., Chen, S. C., Lu, C. H., Wu, Y. H., Lu, M. Y., Chen, D. R., Shih, A. C., Sheue, C. R., Huang, H. C., Yu, C. P., Lin, H. H., Shiu, S. H., Ku, M. S. and Li, W. H. (2013). Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. Proc. Natl. Acad. Sci. USA, 110(10), 3979-3984.
Nimmo, H. G. (1998). Circadian regulation of a plant protein kinase. Chronobiol. Int., 15(2), 109-118.
Ogren, W L. (1984). Photorespiration: pathways, regulation, and modification. Ann. Rev. Plant Physiol., 35(1), 415-442.
Osborne, C. P. and Freckleton, R. P. (2009). Ecological selection pressures for C4 photosynthesis in the grasses. Proc. Biol. Sci., 276(1663), 1753-1760.
Reiskind, J. B. and Bowes, G. (1991). The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc. Natl. Acad. Sci. USA, 88(7), 2883-2887.
Reiskind, J. B., Howard, B. R., Salvucci, M. E. and Bowes, G. (1989). Immunogold localization of primary carboxylases in leaves of aquatic and A C3-C4 intermediate species. Plant Science, 61(1), 43-52.
Saez-Vasquez, J., Raynal, M. and Delseny, M. (1995). A rapeseed cold-inducible transcript encodes a phosphoenolpyruvate carboxykinase. Plant Physiol., 109(2), 611-618.
Sage, R. F., Li, M. and Monson, R. K. (1999). The Taxonomic Distribution of C4 Photosynthesis. In R. F. Sage &; R. K. Monson (Eds.), C4 Plant Biology, pp. 551-584.
Salvucci, M. E. and Bowes, G. (1983). Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Plant Physiol., 73(2), 488-496.
Shieh, Y. J., Ku, M. S. and Black, C. C. (1982). Photosynthetic Metabolism of Aspartate in Mesophyll and Bundle Sheath Cells Isolated from Digitaria sanguinalis (L.) Scop., a NADP-Malic Enzyme C4 Plant. Plant Physiol., 69(4), 776-780.
Somerville, C. R. (2001). An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol., 125(1), 20-24.
Somerville, C. R. and Ogren, W. L. (1981). Photorespiration-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxymethylase activity. Plant Physiol., 67(4), 666-671.
Suzuki, S., Murai, N., Burnell, J. N. and Arai, M. (2000). Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiol., 124(1), 163-172.
Suzuki, S., Murai, N., Kasaoka, K., Hiyoshi, T., Imaseki, H., Burnell, J. N. and Arai, M. (2006). Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase and/or phosphoenolpyruvate carboxykinase. Plant Sci., 170(5), 1010-1019.
Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M. and Honda, H. (2000). Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta, 211(2), 265-274.
Taniguchi, Y., Ohkawa, H., Masumoto, C., Fukuda, T., Tamai, T., Lee, K., Sudoh, S., Tuchida, H., Sasaki, H., Fukayama, H. and Miyao, M. (2008). Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic pathway into rice. J. Exp. Bot., 59(7), 1799-1809.
Toh, H., Kawamura, T. and Izui, K. (1994). Molecular evolution of phosphoeno/pyruvate carboxylase. Plant Cell Environ., 17(1), 31-43.
Trevanion, S., Brooks, A. and Leegood, R. C. (1995). Control of gluconeogenesis by phosphoenolpyruvate carboxykinase in cotyledons of Cucurbita pepo L. Planta, 196(4), 653-658.
Tsuchida, H., Tamai, T., Fukayama, H., Agarie, S., Nomura, M., Onodera, H., Ono, K., Nishizawa, Y., Lee, B. H., Hirose, S., Toki, S., Ku, M. S., Matsuoka, M. and Miyao, M. (2001). High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol., 42(2), 138-145.
Vidal, J. and Chollet, R. (1997). Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci., 2(6), 230-237.
Walker, R. P. and Leegood, R. C. (1996). Phosphorylation of phosphoenolpyruvate carboxykinase in plants. Studies in plants with C4 photosynthesis and Crassulacean acid metabolism and in germinating seeds. Biochem. J., 317 ( Pt 3), 653-658.
Walker, R. P., Acheson, R. M., Técsi, L. I. and Leegood, R. C. (1997). Phosphoenolpyruvate carboxykinase in C4 plants: its role and regulation. Funct. Plant Biol., 24(4), 459-468.
Whitney, S. M., Baldet, P., Hudson, G. S. and Andrews, T. J. (2001). Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J., 26(5), 535-547.
Wilmink, A., van de Ven, B. C. and Dons, J. J. (1995). Activity of constitutive promoters in various species from the Liliaceae. Plant Mol. Biol., 28(5), 949-955.
Wingler, A., Walker, R. P., Chen, Z. H. and Leegood, R. C. (1999). Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiol., 120(2), 539-546.
Wintermans, J. F. and de Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta., 109(2), 448-453.
Yang, H. W. (2011). Photosynthetic characteristics of transgenic rice simultaneously overexpressing maize C4 PEP Carboxylase and PEP carboxykinase. National Chiayi University Master thesis.
Yang, S. M. (2006). A Cyanobacterial CO2 Concentrating Mechanism Enhances Rice Photosynthesis and Productivity. National Chiayi University Master thesis.
Yanagisawa M. 2007. Production and physiological characteristics of transgenic rice simultaneously overexpressing PEP carboxylase, pyruvate, Pi dikinase and NADP-malic enzyme. Nation al Chiayi University Master thesis.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top