跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫欣諺
研究生(外文):Sin-Yan Wu
論文名稱:在成本限制情況下exponentiated weibull商品之最適逐步分群設限計劃
論文名稱(外文):Optimal progressively group-censoring Plan for exponentiated Weibull products in presence of cost constraint
指導教授:吳忠武吳忠武引用關係
指導教授(外文):Jong-Wuu Wu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
畢業學年度:102
語文別:中文
論文頁數:181
中文關鍵詞:逐步型I設限敏感度分析exponentiated weibull分配最大概似估計量逐步設限
外文關鍵詞:progressively type I censoringsensitivity analysisexponentiated Weibull distributionmaximum likelihood estimatorprogressively censoring.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要針對exponentiated weibull分配具有參數 γ、β 、λ 的逐步型I分群設限 (progressively type I group-censoring)之壽命試驗 (life testing),我們使用最大概似法 (maximum likelihood method)來獲得exponentiated weibull分配的參數之估計量。進一步,我們也求得參數之估計量的漸近變異數-共變異數矩陣之行列式或參數之估計量的函數(例如:q 階分位數估計量 (quantile estimator) 和存活函數 (survival function))的漸進變異數 (asymptotic variance)。接著,再根據壽命試驗過程所需消耗的各種成本,設計一個有關成本的壽命試驗之最佳逐步分群設限計劃:在成本限制情況下的exponentiated weibull壽命試驗,我們採用D-optimality方法 (亦即,使得參數之估計量的漸近變異數-共變異數矩陣之行列式值為最小)來決定其最佳試驗個數 (n)、試驗區間個數 (k)以及試驗區間的長度 (τ);其次,本文也使用另兩個最適性方法(亦即,所考慮未知參數之估計量的函數,例如:q 階分位數估計量和存活函數之估計量,使得參數之估計量的函數之漸進變異數為最小)來決定其最佳試驗個數 (n*)、試驗區間個數 (k*)以及試驗區間的長度(τ*)。最後,我們列舉三個數值範例來闡述所提出的方法,以及探討exponentiated weibull分配參數和成本參數變動時的敏感度分析。
目錄
中文摘要………………………………………………………… I
英文摘要………………………………………………………… II
誌謝辭…………………….………………………………………… IV
目錄……………………………………………………………… V
圖目錄…………………….………………………………………… VII
表目錄……………………….……………………………………… VIII
第一章 緒論……………………………………………………… 1
1-1研究背景與動機及目的……………………………… 1
1-2文獻探討……………………………………………… 4
1-3研究架構與流程……………………………………… 7
第二章 符號說明、試驗進行程序以及模型參數估計……………… 8
2-1符號說明…………………………..…..………………… .8
2-2 逐步型I設限之統計模型與參數估計.………………… .9
2-2-1當 τ=i τ 時…………………....................………….12
2-2-2當 τ=i(2 τ) 時………………....................………30
2-2-3當 τ=i(0.5τ)時………………....................………46
第三章 設計成本限制下壽命試驗的演算法………………….…… 64
3-1最適的計畫…...…………….…………………………… 64
3-2演算法…...………………….…………………………… 71
3-2-1估計 γ、β 、λ ……………....................…… 73
3-2-2未限制總試驗時間或迴圈數…………………… 73
3-2-3限制總試驗時間或迴圈數……………………… 74
第四章 實例探討…………………………………………………… 76
4-1 實例一......………………….……….…………………… 76
4-2實例與文獻結果之比較……………………………… 80
第五章 敏感度分析……………………………………………… 83
5-1實例一......………………….……….…………………… ..83
5-1-1分配參數 γ、β 、λ 與機率 p 改變…..……..……. 83
5-1-2試驗成本改變…...……………. 102
5-1-3試驗長度改變……………………...…..……..… 167
第六章 結論與未來研究…………………………………………… 174
6-1結論…………………………………………………..…… 175
6-2未來研究……...………………………………………… 177
參考文獻……………………………………………………….… 179
中文文獻
[1] 吳碩傑(2006),韋伯分配下之最佳逐步分群設限試驗計畫。NSC94-2118-M-032-007-,淡江大學統計學系。
[2] 沈暐玲(2003),二項與隨機移除之行II逐步設限下Rayleigh分配和Gompertz分配資料的統計分析,淡江大學統計學研究所碩士論文,未出版。
[3] 郭主典(2011),基於截斷型壽命試驗下對指數韋柏分配的允收抽樣計畫,國立嘉義大學應用數學系碩士班論文,未出版。
[4] 徐斌書(2001),非常態製程能力指標的探討與比較,淡江大學統計學研究所碩士論文。
[5] 黃千書(2012),在成本限制情況下Rayleigh商品之最適逐步分群設限計劃,國立嘉義
大學應用數學系碩士班論文,未出版。
英文文獻
[1] Anderson, D. R., Sweeney, D. J. and Williams, T.A. (1990), Statistics for Business and Economics,West Publishing Company, Saint Paul, MN.
[2] Aggarwala, R. (2001) , Progressively interval censoring: some mathematical results with application to inference", Communications in Statistics-Theory and Methods, 30:1921-1935.
[3] Akdoğan, Y., Kuş, C., Wu, S.-J (2012), Planning Life Tests for Burr XII Distributed Products Under Progressive Group-censoring with Cost Considerations, Gazi University Journal of Science, 25(2), 425-434.
[4] Attia, A. F. andAssar, S. M. (2012),Optimal progressive group-censoring plans for weibulldistribution in presence of cost constraint, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 27, pp.1337 –1349.
[5] A. A. Marwa, Hegazy Zaher and E. A. Elsherpieny (2013), Optimum Group Limits for Maximum Likelihood Estimation of the Exponentiated Fréchet Distribution Based on Grouped Data British Journal of Applied Science &; Technology 3(4), 1464-1480
[6] Aludaat KM, Alodat MT, Alodat TT. (2008) Parameter estimation of Burr type X distribution for grouped data. Applied Mathematical Sciences.;2(9):415 – 423.
[7] Balakrishnan, N. and Aggarwala, R. (2000), Progressive Censoring: Theory, Methods andApplications, Birkhäuser, Boston.
[8] Caroni, C. (2002), The correct “ball bearings” data, Lifetime Data Analysis, 8, 395-399.
[9] Casella, G. and Berger, R. L. (2002), Statistical Inference, Second Edition, Pacific Grove, CA: Duxbury.
[10] Cheng, K. F. and Chen, C. H. (1998), Estimation of the Weibull parameters with
grouped data, Communications in Statistics- Theory and Methods, 17, 325-341.
[11] Chiou, K. C. andTong, L. I. (2001),Average type-II censoring times fortwo-parameter Pareto and Rayleighdistributions, International Journal ofQuality &Reliability Management,18(6), pp.643-656
[12] Chen, Z. and Mi, J. (1996), Confidence interval for the mean of the exponential distribution based on grouped data, IEEE Transactions on Reliability, 45, 671-677.
[13] Cohen, A. C. (1963), Progressively censored samples in the life testing, Technometrics, 5, 327-339.
[14] Caroni, C. (2002), The correct “ballbearings” data, Lifetime Data Analysis, 8,pp.395-399
[15] Chen, Z. and Mi, J. (1996). Confidence interval for the mean of the exponential distribution, based on grouped data, IEEE Transactions on Reliability, 45, 671-677.
[16] Epstein, B. and Sobel, M. (1953) “Life Testing.”Jour. Amer.Stat. Assoc. 48,486-507.
[17] G.S. Mudholkar, D.K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-real data, IEEE Transaction Reliability, 42 (1993),
299-302.
[18] H. K. T. Ng and P. S. Chan (2007), “Comments on Progressive Censoring Methodology: An Appraisal,” Test, Vol. 16, No. 2, 2007, pp. 287-289.
[19] Keller, G., Warrack, B. and Bartel, H. (1994),Statistics for Management and Economics, Duxbury Press, Belmont, CA
[20] Kantam RRL, Roa, AV, Roa GS. (2005) Optimum group limits for estimation in scaled logistic distribution from grouped data, Statistical Papers.;46(3):359-377.
[21] Kundu, D. and Raqab, M. Z. (2012). Bayesian inference and prediction for a type II censored Weibull distribution, Journal of Statistical Planning &; Inference 142(1), 41-47.
[22] Kim, C., Jung, J., and Chung, Y. (2011). Bayesian estimation for the exponentiated Weibull model under type II progressive censoring, Statistical Papers 52(1), 53-70.
[23] Lawless, J.F. (1982) Statistical Models and Methods for Life-time Data, Wiley, New York.
[24] Lawless, J. E. (2003), Statistical Models and Methods for Lifetime Data, Second
Edition, New York: John Wiley &; Sons Inc.
[25] Lee, W. C., Wu, J. W. and Hong, C. W. (2009), Assessing the lifetime performance index of products from progressively type II right censored data using Burr XII model, Mathematics and Computers in Simulation, 79, 2167-2179.
[26] Lee, W. C., Wu, J. W. and Hong, C. W. (2009), Assessing the lifetime performance index of products with the exponential distribution under progressively type II right censoredsamples, Accepted in Journal of Computation and Applied Mathematics.
[27] Lee, W. C., Wu, J. W. and Lei, C. L. (2010), Evaluating the lifetime performance index for the exponential lifetime products, Applied Mathematical Modelling, 34, 1217-1224
[28] L. K. Chan, S. W. Chang and F. A. Spiring, F. A., A new measure of process capability : cpm, Journal of Quality Technology, vol. 20, pp.162-175, 1988.
[29] Meyer, P. L. (1965), Introductory Probability and Statistical Applications, Addison-Wesley, Reading,MA.
[30] Mohamed A. W. Mahmoud, Ahmed A. Soliman, Ahmed H. Abd Ellah, Rashad M. El-Sagheer(2013), Estimation of Generalized Pareto under an Adaptive Type-II Progressive Censoring Intelligent Information Management, , 5, 73-83
[31] Meintanis, S. andIliopoulos, G. (2003), Tests of fit for the Rayleigh distribution based on the empirical laplace transform, Annals of the Institute of Statistical Mathematics, 55(1), pp.137-151
[32] Nelson, W.B. (1982) Applied Life Data Analysis. Wiley, New York.
[33] Ng, H. K. T. (2005). Parameter estimation for a modified Weibull distribution for
progressively type-II censored samples, IEEE Transactions on Reliability 54(3), 374-380.
[34] Patel, M.N. and Gajjar, A.V. (1995), Some results on maximum likelihood estimators of parameters of exponential distribution under type I progressive censoring with changing failure rates", Communications in Statistics - Theory Methods, 24:2421-2435.
[35] Soliman, A. A. (2005), Estimation of parameters of life from progressively censored data using Burr-XII model, IEEE Transactions on Reliability, 54, 34-42.
[36] Shadrokh A., Nasiri P.(2011), Estimation on the minimax distribution using grouped data. Journal of applied Science, 11(18):3333-3337.
[37] Qian, L., Correa, J.A., “Estimation of Weibull parameters for grouped data with competing risks”, Journal of Staistical Computation and Simulation.
73, 261-275 (2003).
[38] Tse, S.-K., Yang, C. and Yuen, H.-K.(2000). Statistical analysis of Weibull distributed lifetime data under type Ⅱ progressive censoring with binomial removals, Journal of Applied Statistics, 27, 1033-1043.
[39] Wu, S. J., Chang, C. T.(2003). Inference in the Pareto distribution based on progressive Type II censoring with random removals. J. Appl. Statist. 30(2):163–172.
[40] Wu, S.-J., Chang, C.-T., Liao, K.-J., Huang, S.-R., “Planning of progressive group censoring life tests with cost considerations”, Journal of Applied Statistics, 35, 1293-1304 (2008a).
[41] Wu, J. W., Hung, W. L. and Chen, C. Y.(2004), Approximate MLE of the truncated Rayleigh distribution under the first failure-censored data, Journal of Information and Optimization Sciences, 25, 221-235
[42] Wu, S.-J., Lin, Y.-P., Chen, S.-T (2008b). “Optimal step-stress test under type I progressive group-censoring with random removals”, Journal of Statistical Planning and Inference, 138, 817-826

[43] Wu, J. W., Lee, H. M. andLei, C. L. (2007), Computational testing algorithmicprocedure of assessment for lifetime performance index of products with two-parameter exponential distribution, Applied Mathematics and Computation, 190, pp.116-125
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊