跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/25 02:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊孟婷
研究生(外文):Meng-Ting Chuang
論文名稱:三維聚乳酸/羥基乙酸共聚合物奈米結構陣列製備與分析,及其在循環腫瘤細胞之應用
論文名稱(外文):A study on the preparation and characterization of poly(lactic-co-glycolic)acid nanostructure array and its application of circulating tumor cells
指導教授:陳素華陳素華引用關係陳培菱陳培菱引用關係蕭育生
指導教授(外文):Su-Hua ChenPei-Lin ChenYu-Sheng Hsiao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:73
中文關鍵詞:聚乳酸/羥基乙酸共聚合物奈米柱循環腫瘤細胞
外文關鍵詞:PLGANanopillarsCTCs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
癌症是現代人類的主要死因之一,癌症致死的其中一個原因是癌症以很快的速度擴散到其他正常的器官,導致其他併發症,而其中一種經由血管轉移的癌細胞稱作循環腫瘤細胞(Circulating Tumor Cells, CTCs)。本研究使用改質的奈米結構聚乳酸/羥基乙酸共聚合物基板抓取兩種循環腫瘤細胞,可被專一性抗體辨識的MCF7(乳癌細胞)及不被抗體辨識的HeLa(子宮頸癌細胞)。主要探討抓取時間及奈米柱直徑對細胞附著密度的影響。
第一組實驗討論改變抓取細胞的時間,細胞附著於基板密度的變化。由實驗結果發現,兩種細胞隨著抓取時間的增加細胞密度有所上升,在60分鐘時逐漸達到細胞密度飽和。兩種細胞密度的比較,因抗體效應細胞密度有所不同,MCF7比HeLa的抓取的細胞密度較多。
第二組實驗討論改變奈米柱直徑,細胞附著於基板密度的變化。由實驗結果發現,兩種細胞隨著奈米柱直徑的減小細胞密度會逐漸增加。從材料的性質來觀察,奈米柱直徑較小的基板有著較小的楊氏模數;從材料的結構觀察,當奈米柱直徑越小,兩奈米柱之間有著最大的距離和最小的表面積。從細胞數量的變化來觀察,在直徑300nm到400nm之間的細胞密度變化極大,推測和奈米柱的3D結構有最大的關聯。當奈米柱直徑越小時,表面積也越小代表黏著抗體的密度也越高,並且當奈米柱之間的空隙越大,細胞伸展時的絲狀偽足(filopodia)可以伸展的空間相對於較大的奈米柱直徑較多,因此可以判斷3D結構在抓取特定癌細胞有相對優勢。



Cancer has gradually become one of the major causes of death of human, and the development of its detection and treatment methods has become one of the most urgent issues to study. This thesis focuses on the cancer cell attachment efficiency on modified substrates made of polylactic acid / glycolic acid copolymer (PLGA) special 3D nanostructures. There are two cell line, HeLa (cervical cancer) and MCF7 (breast cancer cells), which were chosen as model system to study cell attachment on substrates. The specific human biotinylated antibody- epithelial cell adhesion molecule (EpCAM) will play an important role on recognizing MCF7 and HeLa to proof antibody effect.
The first set of experiments is to reveal different cell attachment efficiency of HeLa and MCF7 on substrates which were modified with the EpCAM. While changing the time of capturing cells, both cells HeLa and MCF7 can attach on PLGA substrates in 60 minutes and the density will reach saturation after 60 minutes. The attachment density of MCF7 is higher than that of HeLa due to the antibody effect.
The second set of experiments to explore the cell attachment efficiency on the substrates with different diameter nanopillars. The smaller the diameter of nanopillars (down to 200 nm) has higher density of cell adhesion. There are two factor will be discussed. First, we consider the properties of PLGA substrates. The smaller diameter of nanopillars has lower young’s modulus. Second, the structure of the nanopillar is another point. The space between two nanopillars become large and the surface of nanopillars get less when diameters of nanopillars decrease. These features of nano structure mean that cell can have more space to stretch their filopodia and higher antibody density on surface. Hence, we can speculate that 3D nano structure plays an important role on the cell attachment.


致謝…………………………………………………………………………………..Ⅰ
摘要…………………………………………………………………………………..Ⅱ
英文摘要(Abstract)…………………………………………………Ⅲ
目錄…………………………………………………………………………………..Ⅳ
圖目錄………………………………………………………………………………..Ⅵ
表目錄………………………………………………………………………………..Ⅸ

第一章 緒論…………………………………………………………………………..1
1.1 背景………………………………………………………….……..…..……1
1.2 循環腫瘤細胞(Circulating Tumor Cells, CTCs )…………………4
1.3 循環腫瘤細胞的偵測方法…………………………………………..……...7
1.3.1基板尺寸篩選法(Size exclusion method)…….…...…………………7
1.3.2密度梯度分離法(Density gradient method)………………………9
1.3.3免疫磁球(immunomagnetic beads)……………………………....10
1.3.4微流體(Microfluidic devices)……….………………………..……11
1.3.5奈米柱抓取法(Nanopillar approach)………………….………..15
1.4論文目標與未來展望…………………………………….................16

第二章 研究方法……………………………………………………………………19
2.1實驗流程…………………………………….......………………….19
2.1.1 基板製備………………………………………………………....19
2.1.2 基板改質……………………………………...……………....….24
2.1.3 抓取細胞………………………………………………...…….…26
2.2分析方法…………………………………………………………………..32
2.2.1基板分析…………………………………...………………….…….32
a.形貌觀測………………………………………………………...…36
b.楊氏模數……………………………………………………..….…37
2.2.2細胞分析……………………………...……………………………..38

第三章 結果……………………………………………………………………….....41
3.1母模(矽基板)與PLGA基板的表面形貌………………………….…...…...41
3.2 PLGA奈米柱的楊氏模數………………………...............………47
3.3抓取時間的改變與細胞密度的變化…………………………………...…..52
3.4 PLGA奈米柱直徑的改變與細胞密度的變化………...……………….….54
3.5楊氏模數與細胞密度的關係………………………………………………57
3.6 PLGA奈米柱長寬比對細胞密度的影響………………………………….59
第四章 討論………………………………………………………...….…….……...61
第五章 結論………………………………………………...…………………….....63
第六章 參考文獻……………………………………………………………………65
第七章 附錄…………………………………………………………………………69


[1] 主要死因趨勢, 衛生福利部http://www.mohw.gov.tw/cht/DOS/Statistic_P.aspx?f_list_no=312&fod_list_no=4770&doc_no=43606
[2] http://zh.wikipedia.org/wiki/%E5%85%A7%E8%A6%96%E9%8F%A1
[3] Wicha MS, Hayes DF. “Circulating tumor cells: not all detected cells are bad and not all bad cells are detected.” J Clin Oncol. 2011; 29(12): 1508-1511.
[4] http://en.wikipedia.org/wiki/Metastasis
[5] Siyang Zheng, Henry Lin, Jing-Quan Liu, Marija Balic, Ram Datar, Richard J. Cote, Yu-Chong Tai, “Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells”, Journal of Chromatography A 2007, 154:154-161
[6] Hisham Mohamed, Megan Murray, James N. Turner, Michele Caggana, “Isolation of tumor cells using size and deformation”, Journal of Chromatography A 2009, 1216 : 8289–8295
[7] Marija Balic, Nadia Dandachi, Henry Lin, and Ram H Datar, “Cancer metastasis: advances in the detection and characterization of disseminated tumour cells facilitate clinical translation.”, The National medical journal of India 2005, 18(5):251-253
[8]OncoQuick®, http://www.greinerbioone.com/en/row/articles/catalogue/article/316_11/12229/
[9] S. Kim, H. Lee, et al, “ A CTC microseparator for isolation of circulating tumor cells using lateral magnetophoresis and magnetic nanobeads”, MicroTAS 2011, Seattle, USA, pp. 1894-1896
[10] microfluidic, http://openinfo.npust.edu.tw/agriculture/npus12/m13/013/013%E5%88%86%E5%AD%90%E6%AA%A2%E6%B8%AC%E6%8A%80%E8%A1%93%E5%AF%A6%E7%BF%92--004.pdf
[11]microfluidic, http://203.145.193.110/NSC_INDEX/Journal/EJ0001/9401/9401-11.pdf
[12] Yi-Tsung Lu, Libo Zhaod, Qinglin Shend, Mitch A. Garciad, Dongxia Wud,
Shuang Houd, Min Songd, Xiaochun Xud,Wei-Han OuYangd, William W.-L.
OuYangd, Jake Lichtermana, Zheng Luod, Xuan Xuand, Jiaoti Huangg, Leland W.
K. Chunga, Matthew Rettigh, Hsian-Rong Tsengd, Chen Shaoa, and Edwin M.
Posadasa, “NanoVelcro Chip for CTC enumeration in prostate cancer
Patients” , NIH Public Access and PMC 2013
[13] Shannon L. Stott, Chia-Hsien Hsu, Dina I. Tsukrov, Min Yu, David T. Miyamoto, Belinda A. Waltman, S. Michael Rothenberg, Ajay M. Shah, Malgorzata E. Smas, George K. Korir, Frederick P. Floyd, Jr., Anna J. Gilman, Jenna B. Lord, Daniel Winokur, Simeon Springer, Daniel Irimia, Sunitha Nagrath, Lecia V. Sequist, Richard J. Lee, Kurt J. Isselbacher, Shyamala Maheswaran, Daniel A. Haber, and Mehmet Toner “Isolation of circulating tumor cells using a microvortex-generating herringbone-chip” PNAS 2010, vol. 107 no. 43: 18392–18397
[14] Shutao Wang, Gwen E. Owens, and Hsian-Rong Tseng “Nano “Fly Paper” Technology for the Capture of Circulating Tumor Cells” Biomedical Nanotechnology : Methods and Protocols 2011, vol.726:141-149
[15] Shutao Wang, Hao Wang, Jing Jiao, Kuan-Ju Chen, Gwen E. Owens, Ken-ichiro Kamei, “Three-Dimensional Nanostructured Substrates toward Efficient
Capture of Circulating Tumor Cells” Angewandte Chemie International Edition 2009, Volume 48 Issue 47:8970–8973
[16] Younan Xia and George M. Whitesides, SOFT LITHOGRAPHY, Annu. Rev. Mater. Sci. 1998. 28:153–84
[17] Dong Qin, Younan Xia and George M Whitesides, “Soft lithography for micro- and nanoscale”, nature protocols 2010 vol.5 no.3:491-502
[18] Jun Sekine , Shyh-Chyang Luo, Shutao Wang, Bo Zhu, Hsian-Rong Tseng, and Hsiao-hua Yu, “Functionalized Conducting Polymer Nanodots for Enhanced Cell Capturing: The Synergistic Effect of Capture Agents and Nanostructures” , Adv. Mater. 2011, 23: 4788–4792
[19]MCF7, ATCC, http://www.atcc.org/Products/All/HTB-22.aspx
[20]HeLa, ATCC, http://www.atcc.org/Products/All/CCL-2.aspx
[21] Useful Numbers for Cell Culture, http://tools.lifetechnologies.com/downloads/Useful_Numbers_Y14472_Useful_Nmbrs.pdf
[22]Brand血球計數器http://pic.oig.cc/201403/28171753828.pdf
[23]計算細胞的方法 http://smallcollation.blogspot.tw/2013/01/cell-count.html
[24]掃描式電子顯微鏡http://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C
[25]掃描探針為技術 http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[26] 蘭納-瓊斯勢(Lennard-Jones potential function) http://zh.wikipedia.org/wiki/%E5%85%B0%E7%BA%B3-%E7%90%BC%E6%96%AF%E5%8A%BF
[27] Hertz mode和Sneddon mode示意圖及公式http://www.iupui.edu/~bbml/afmintro.shtml
[28]JPK Application Note file:///D:/Downloads/jpk-app-elastic-modulus.14-1.pdf
[29]螢光顯微鏡原理http://highscope.ch.ntu.edu.tw/wordpress/?p=912
[30] Leica AF6000 Modular Systemshttp://www.leica-microsystems.com/products/light-microscopes/life-science-research/fluorescence-microscopes/details/product/leica-af6000/



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top