(3.235.139.152) 您好!臺灣時間:2021/05/11 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:羅新璽
研究生(外文):Hsin-Hsi Lo
論文名稱:可見光二氧化鈦的結構特性與電子順磁共振之研究
論文名稱(外文):Structural Characteristics &; Electron Paramagnetic Resonance Investigation of Visible-light Active TiO2
指導教授:柯學初
指導教授(外文):Shyue-Chu Ke
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:128
中文關鍵詞:可見光二氧化鈦電子順磁共振
外文關鍵詞:Visible-light Active TiO2EPR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:1
至今普遍研究公認氮摻雜於銳鈦礦型態之二氧化鈦會造成氧空缺的形成。而一個重要的爭議在於觸媒的可見光活性,主要是來自於氮的摻雜還是氧空缺形成所主導。我們的證據顯示富含氧缺陷的銳鈦礦型之二氧化鈦會形成結構配位不飽和的鈦原子,而此結構配位不飽和的鈦原子與可見光之光觸媒活性是相關的。因此,氧空缺才是導致氮摻雜二氧化鈦光觸媒具可見光活性的主因,甚至在其他非金屬元素摻雜於氧位置之二氧化鈦可能也是如此。基於氧缺陷結構之銳鈦礦二氧化鈦被研究與探討,並證實其具有可見光光觸媒活性。
我們利用四異丙甲基鈦與磷酸為前驅物利用溶膠凝膠法配製具可見光活性之磷摻雜二氧化鈦奈米粒子。結果顯示磷摻雜不只減少粒徑的大小同時亦能增加晶體的熱穩定性,並延緩銳鈦礦轉換成金紅石型態之相位轉變。紫外至可見光光譜結果顯示磷的摻雜會造成吸收帶的紅位移。磷摻雜與氮或其他非金屬元素不同的地方,在於磷是以正五價的形式摻雜於鈦的位置,取代了四價鈦原子而形成了Ti-O-P的鍵結。可見光光降解亞甲基藍實驗顯示磷摻雜二氧化鈦較未摻雜或商業級二氧化鈦(P25)具較高的活性。低溫電子順磁共振結果顯示造成光觸媒活性的提升主要是因為電荷分離效率提升所致。
在氫氣之氣氛下配置二氧化鈦奈米粒子,並在高溫下熱處理形成金紅石相,而其表面與分子氧產生反應形成新的電洞捕捉位置,可以有效率的捕捉光激發所形成之電洞。電子順磁共振所觀測到的g值與47Ti與49Ti的八位精細結構讓我們確認此以氧為中心的陰離子自由基是與鈦形成二配位之結構。此結構抑制了電子電洞的重新結合並有效率的提升了可見光反應之光觸媒活性。相較平行條件於空氣下製備的樣品,其活性提升了2.5倍之多。重新氧化於還原環境下製備之二氧化鈦顯然是一種簡單又兼具低成本的途徑,可用以提升二氧化鈦光觸媒之活性。
在TiO2(B)與銳鈦礦混相的奈米線中,光生電荷載子如何在兩相位中傳遞,至今還沒有一確切的答案。電子順磁共振光譜正好可被用以研究電荷轉移的現象。 當製備好的樣品利用紫外光照射後,結果顯示在銳鈦礦的電洞會轉移到TiO2(B),藉由模擬電洞捕捉於兩相位之百分比與實際XRD估算出兩相位的百分比所分析之結果顯示之。我們確切的顯示當可見光照射此樣品時,只激發了TiO2(B)而產生電子電洞,而電子很明顯地轉移至銳鈦礦相的二氧化鈦。另外,我們製備了氮摻雜之TiO2(B)/銳鈦礦混相之二氧化鈦,用以特定激發氮的電子探討電子轉移的特性,同時不需要激發能帶所產生之電洞,更進一步確認電子是由TiO2(B)轉移至銳鈦礦之結果。而氮的EPR訊號經光照射後達到飽和,再觀察其訊號隨時間衰減的變化顯示轉移後的電子要回到TiO2(B)相位是有難度的。結論顯示TiO2(B)的導帶與價帶都相對較銳鈦礦為高。此結果顯示基於TiO2(B)奈米線為可被應用於光電或光觸媒具潛力之材料。

As it is now well established that oxygen vacancies are spontaneously introduced during nitrogen doping of anatase TiO2, there is a lively debate on whether nitrogen dopant or oxygen vacancy contributes to the visible light photoactivity of the catalyst. We showed that the coordinately unsaturated Ti site is integral to the visible light photoactivity in anatase oxygen-deficient-TiO2 catalyst. Accordingly, oxygen vacancies may contribute to the visible light photoactivities in N–TiO2 and other nonmetallic ion doped TiO2 as well. A redox active visible light photocatalyst has been developed based on oxygen-deficient structure in anatase TiO2.
Phosphorus-doped anatase TiO2 nanoparticles with visible light activity were prepared by sol-gel method by using Ti(IV) isopropoxide and phosphoric acid as precursors. The results indicate that phosphorus-doping into anatase TiO2 lattice decreases the particle size, increases the thermal stability of titania and retards the phase transition from anatase to rutile. UV-vis absorption of the P-doped samples shows the redshift in its absorption edge. Doped phosphorus exists in a pentavalent oxidation state by replacing part of lattice Ti4+ by the formation of Ti-O-P bonds. MB degradation profiles with visible light irradiation show that the photocatalytic activity of P-doped titania is much enhanced and superior to undoped anatase TiO2 and commercial Degussa P25. Low temperature EPR studies with in situ visible light irradiation on the samples heated at different temperatures clearly demonstrates that enhanced charge separation is the major reason for the enhanced photocatalytic activity.
Rutile TiO2 nanoparticles with new sites for effectively trapping photogenerated holes have been prepared by reacting the TiO2 nanoparticles prepared in hydrogen atmosphere with molecular oxygen at elevated temperatures. The observed g values and the occurrence of 47Ti and 49Ti octet hyperfine pattern allowed us to assign this EPR active center to surface oxygen centered anion radical with two coordinating titaniums. The effective trapping of photogenerated holes by these new sites inhibits the electron-hole recombination and results in an enhanced photocatalytic activity under visible light by a factor of 2.5 compared with samples prepared parallel in air. Oxidation of reduced TiO2 apparently is a simple low cost and promising route for improving the photoactivity of TiO2.
Regarding how photogenerated charge carriers are transferred in TiO2(B)/anatase mixed-phase nanowires, no unified conclusion has been reached. EPR spectroscopy is employed to investigate the vectorial charge transfer in this material. When the material is subjected to UV irradiation, we show that holes stimulated in anatase are transferred to TiO2(B) by comparing EPR detected amount of trapped holes O accumulated on TiO2(B) with XRD determined TiO2(B) bulk phase compositions. Under visible light irradiation which only activates TiO2(B) phase, we unambiguously show that electron transfer occurs from TiO2(B) to anatase. Without intervention of other charge carriers generated by bandgap excitation, we monitor exclusively the fate of conducting electrons generated by specific excitation of N– midgap state of TiO2(B) with holes localized on the N atom in N–doped–TiO2(B)/anatase. The result again clearly demonstrates that electrons migrate from TiO2(B) to anatase. Time dependent decay of N• EPR signal shows that it is difficult for the transferred electron to return to TiO2(B). Both higher conduction band and valence band edge potentials in TiO2(B) than the corresponding ones of anatase are implicated. This study helps to point the way toward future development of TiO2(B) nanowire based material for photovoltaic and photocatalytic applications.

Acknowledgements………………………………………………………………I
Chinese Abstract……………………………………………………………III
Abstract…………………………………………………………………………V
List of Figures………………………………………………………………X
List of Tables………………………………………………………………XVI
List of Schemes……………………………………………………………XVII
Chapter 1 Introduction and Literature Review……………………1
1.1 Introduction………………………………………………………………1
1.2 Titanium dioxide…………………………………………………………2
1.3 Photoexcitation of the TiO2 semiconductor…………………6
1.4 Enhanced photocatalytic activity………………………………8
1.5 Visible light active titanium dioxide………………………10
1.6 Mixed-phase titania…………………………………………………12
1.7 EPR spectra of TiO2…………………………………………………14
1.8 Preparing TiO2…………………………………………………………19
1.9 Purpose of the study…………………………………………………22
Chapter 2 Characterization………………………………………………23
2.1 Field emission scanning electron microscopy (FE-SEM)…………………23
2.2 X-ray photoelectron spectroscopy (XPS)…………………………………24
2.3 Ultraviolet visible spectrophotometer (UV-Vis) …………………………25
2.4 X-ray diffractometer (XRD)…………………………………………29
2.5 BET Surface Area Analyzers (BET)………………………………33
2.6 Electron Paramagnetic Resonance (EPR)………………………35
2.7 Photocatalytic activity……………………………………………39
VIII
2.8 Spin trapping……………………………………………………………40
Chapter 3 Origin of photoactivity of oxygen-deficient TiO2 under visible light……43
3.1 Introduction………………………………………………………………43
3.2 Sample preparation……………………………………………………44
3.3 Results and discussion………………………………………………45
3.4 Conclusions………………………………………………………………54
Chapter 4 Visible light active phosphorus doped TiO2 nanoparticles: an EPR evidence for the enhanced charge separation.…………………………………………………55
4.1 Introduction………………………………………………………………55
4.2 Sample preparation……………………………………………………56
4.3 Results and discussion………………………………………………57
4.4 Conclusions………………………………………………………………74
Chapter 5 A Potential Site for Trapping Photogenerated Holes on Rutile TiO2 Surface as Revealed by EPR Spectroscopy: An Avenue for Enhancing Photocatalytic
Activity…………………………………………………………………………75
5.1 Introduction………………………………………………………………75
5.2 Sample preparation……………………………………………………77
5.3 Results and discussion………………………………………………78
5.4 Supporting Information………………………………………………83
5.5 Conclusions………………………………………………………………89
Chapter 6 Electron Paramagnetic Resonance Investigation of Charge Transfer in TiO2(B)/Anatase and N–TiO2(B)/Anatase Mixed–Phase Nanowires: The Relative Valence and Conduction Band Edges in the Two Phases……………………………91
6.1 Introduction……………………………………………………………91
6.2 Sample preparation……………………………………………………93
6.3 Results and discussion………………………………………………94
6.4 Supporting Information……………………………………………114
6.5 Conclusions………………………………………………………………116
Chapter 7 Summary…………………………………………………………117
References……………………………………………………………………119
1. Linsebigler, A. L.; Lu, G.; Yates, Jr., J. T. Chem. Rev. 1995, 95, 735.
2. Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.
3. Han, F.; Subba Rao, K. V.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Appl. Catal. A 2009, 359, 25.
4. Thompson, T. L.; Yates, Jr., J. T. Chem. Rev. 2006, 106, 4428.
5. Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891.
6. Aprile, C.; Corma, A.; Garcia, H. Phys. Chem. Chem. Phys. 2008, 10, 769.
7. Matsumoto, Y.; Unal, U.; Tanaka, N.; Kudo, A.; Kato, H. J. Solid State Chem. 2004, 177, 4205.
8. O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
9. Tennakone, K.; Jayaweera P. V. V.; Bandaranayake, P. K. M. J. Photochem. Photobiol. A, Chem. 2003, 158, 125.
10. Fujishima, A.; Honda, K. Nature. 1972, 238, 37.
11. Chen, J.; Li, S. L.; Tao, Z. L. Shen, Y. T.; Cui, C. X. J. Am. Chem. Soc. 2003, 125, 5284.
12. JCPDS no. 21-1272.
13. JCPDS no. 21-1276.
14. JCPDS no. 29-1360.
15. Marchand, R.; Brohan, L.; Tournoux, M. Mater. Res. Bull. 1980, 15, 1129.
16. Banfield, J. F.; Veblen, D. R.; Smith, D. J. Am. Miner. 1991, 76, 343.
17. Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2004, 43, 2286.
18. Kakihana, M.; Kobayashi, M.; Tomita, K.; Petrykin, V. Bull. Chem. Soc. Jpn. 2010, 83, 1285.
19. JCPDS no. 46-1238.
20. Betz, G.; Tributsch, H.; Marchand, R. J. Appl. Electrochem. 1984, 14, 315.
21. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemwnn, D. W. Chem. Rev. 1995, 95, 69.
22. Porter, J. F.; Li, Y. G. Chan, C. K. J. Mater. Sci. 1999, 34, 1523.
23. Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem. 1995, 99, 16646.
24. Lee, H. S.; Hur, T.; Kim, S.; Kim, J. H.; Lee, H. I. Catal. Today 2003, 84, 173.
25. Ibusuki, T.; Takeuchi, K. Atmos. Environ 1986, 20, 1711.
26. Stafford, U.; Gray, K. A.; Kamat, P. V.; Varma, A. Chem. Phys. Lett. 1993, 205, 55.
27. Watanabe, T.; Nakajima, A.; Wang, R.; Minabe, M.; Koizumi, S.; Fujishima, A.; Hashimoto, K. Thin Solid Films 1993, 351, 260.
28. Sun, Y.; Egawa, T.; Shao, C.; Zhang, L.; Yao, X. J. Cryst. Growth. 2004, 268, 118.
29. Jing, L. Q.; Xin, B. F.; Yuan, F. L.; Xue, L. P.; Wang, B. Q.; Fu, H. G. J. Phys. Chem. B, 2006, 110, 17860.
30. Xing, M. Y.; Zhang, J. L.; Chen, F.; Tian, B. Z. Chem. Commun. 2011, 47, 4947.
31. Simonsen, M. E.; Li, Z. S.; Sogaard, E. G. Appl. Surf. Sci. 2009, 255, 8054.
32. Serpone, N.; Maruthamuthu, P.; Pichat, P.; Pelizzetti, E.; Hidaka, H. J. Photochem. Photobiol. A: Chem. 1995, 85, 247.
33. Marcì, G.; Augugliaro, V.; López-Muñoz, M. J.; Martín, C.; Palmisano, L.; Rives, V.; Schiavello, M.; Tilley, R. J. D.; Venezia, A. M. J. Phys. Chem. B 2001, 105, 1026.
34. Jang, J. S.; Choi, S. H.; Kim, H. G.; Lee, J. S. J. Phys. Chem. C 2008, 112, 17200.
35. Pan, J. H.; Lee, W. I. Chem. Mater. 2006, 18, 847.
36. Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007.
37. Hu, Y.; Tan, O. K.; Pan, J. S.; Yao, X. J. Phys. Chem. B 2004, 108, 11214.
38. Esquivel-Elizondo, J. R.; Hinojosa, B. B.; Nino, J. C. Chem. Mater. 2011, 23, 4965.
39. Linsebigler, A. L.; Rusu, C.; Yates, Jr., J. T. J. Am. Chem. Soc. 1996, 118, 5284.
40. Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127, 7632.
41. Weiher, N.; Beesley, A. M.; Tsapatsaris, N.; Delannoy, L.; Louis, C.; Bokhoven, J. A. V.; Schroeder, S. L. M. J. Am. Chem. Soc. 2007, 129, 2240.
42. Ye, M. D.; Gong, J. J.; Lai, Y. K.; Lin, C. J.; Lin, Z. Q. J. Am. Chem. Soc. 2012, 134, 15720.
43. Karakitsou, K. E.; Verykios, X. E. J. Phys. Chem. 1993, 97, 1184.
44. Ghicov, A.; Schmidt, B.; Kunze, J.; Schmuki, P. Chem. Phys. Lett. 2007, 433, 323.
45. Ambrus, Z.; Balàzs, N.; Alapi, T.; Wittmann, G.; Sipos, P.; Dombi, A.; Mogyorosi, K. Appl. Catal. B 2008, 81, 27.
46. He, C.; Yu, Y.; Hu, X.; Larbot, A. Appl. Surf. Sci.2002, 200, 239.
47. Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. J. Am. Chem. Soc. 2004, 126, 4782.
48. Irie, H.; Watanabe, Y.; Hashimoto, K. Chem. Lett. 2003, 32, 772.
49. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.
50. Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Paganini, M. C.; Giamello, E. Chem. Phys. 2007, 339, 44.
51. Yu, J. C.; Zhang, L.; Zheng, Z.; Zhao, J. Chem. Mater. 2003, 15, 2280.
52. Ohno, T.; Mitsui, T.; Matsumura, M. Chem. Lett. 2003, 32, 364.
53. Hong, X.; Wang, Z.; Cai, W.; Lu, F.; Zhang, J.; Yang, Y.; Ma, N.; Liu, Y. Chem. Mater. 2005, 17, 1548.
54. Sato, S. Chem. Phys. Lett. 1986, 123, 126.
55. Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483.
56. Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. J. Am. Chem. Soc. 2006, 128, 15666.
57. Wu, Q. P.; Zheng, Q.; Krol, R. V. D. J. Phys. Chem. C 2012, 116, 7219.
58. Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. J. Phys. Chem. B 2003, 107, 4545.
59. Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. J. Phys. Chem. B 2005, 109, 977.
60. Komaguchi, K.; Nakano, H.; Araki, A.; Harima, Y. Chem. Phys. Lett. 2006, 428, 338.
61. Vargeese, A.A.; Muralidharan, K. J. Hazard. Mater. 2011, 192, 1314.
62. Boppella, R.; Basak, P.; Manorama, S.V. ACS. Appl. Mater. Interfaces. 2012, 4, 1239.
63. Li, W.; Liu, C.; Zhou, Y. X.; Bai, Y.; Feng, X.; Yang, Z. H.; Lu, L. H.; Lu, X. H.; Chan, K. Y. J. Phys. Chem. C. 2008, 112, 20539.
64. Yang, D. J.; Liu, H. W.; Zheng, Z. F.; Yuan, Y.; Zhao, J. C.; Waclawik, E.R.; Ke, X. B.; Zhu, H. Y. J. Am. Chem. Soc. 2009, 131, 17885.
65. Wang, G.; Wang, Q.; Lu, W.; Li, J. H. J. Phys. Chem. B 2006, 110, 22029.
66. Liu, B.; Khare, A.; Aydil, E. S. ACS Appl. Mater. Interfaces, 2011, 3, 4444.
67. Kumar, C. P.; Gopal, N. O.; Wang, T. C.; Wong, M. S.; Ke, S. C. J. Phys. Chem. B 2006, 110, 5223.
68. Nakaoka, Y.; Nosaka, Y. J. Photochem. Photobiol. A 1997, 110, 299.
69. Meriaudeau, P.; Che, M.; Jorgensen, C. K. Chem. Phys. Lett. 1970, 5, 131.
70. Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Yeung, K. L.; Augugliaro, V.;
Soria, J. Langmuir 2001, 17, 5368.
71. Howe, R. F.; Gratzel, M. J. Phys. Chem. 1987, 91, 3906.
72. Czoska, A. M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Di Valentin, C.; Pacchioni, G. J. Phys. Chem. C, 2008, 112, 8951.
73. Micic, O. I.; Zhang, Y.; Cromack, K. R.; Trifunac, A. D.; Thurnauer, M. C. J. Phys. Chem. 1993, 97, 7277.
74. Vijayan, B. K.; Dimitrijevic, N. M.; Wu, J. S.; Gray, K. A. J. Phys. Chem. C 2010, 114, 21262.
75. Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H.; Zapol, P. J. Am. Chem. Soc. 2011, 133, 3964.
76. Chiesa, M.; Paganini, M. C.; Livraghi, S.; Giamello, E. Phys Chem. Chem. Phys., 2013, 15, 9435.
77. Li, G.; Dimitrijevic, N. M.; Chen, L.; Nichols, J. M.; Rajh, T.; Gray, K. A. J. Am. Chem. Soc. 2008, 130, 5402.
78. Wei, L. H.; Wu, S. Y.; Zhang, Z. H.; Wang, X. F.; Hu, Y. X. Pramana 2008, 71, 167.
79. Zwingel, D. Solid State Commun. 1978, 26, 775.
80. Livraghi, S.; Votta, A.; Paganini, M. C.; Giamello, E.; Chem. Commun. (Cambridge) 2005, 4, 498.
81. Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. J. Phys. Chem. B 2007, 109, 11414.
82. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33.
83. Vioux, A. Chem. Mater. 1997, 9, 2292.
84. Andersson, M.; Oesterlund, L.; Ljungstroem, S.; Palmqvist, A. J. Phys. Chem. B 2002, 106, 10674.
85. Siegbahn, K. et. al., Nova Acta Regiae Soc. Sci., Ser. IV, Vol. 20 (1967).
86. Ingle, J. D. J. Crouch, S. R. Spectrochemical Analysis, Prentice Hall, New Jersey (1988)
87. Kubelka, P.; Munk, F. Z. Tech. Phys. (Leipzig) 1931, 12, 593.
88. Tauc, J.; Grigorovici, R.; Vancu, A. Phys. Stat. Sol. 1966, 15, 627.
89. Tubiana, M. Bull Acad Natl Med. 1996, 180, 97.
90. Bragg, W. H. Phil. Mag. 1912, 23, 647.
91. Jenkins, R.; Snyder, R. L. Introduction to X-ray Powder Diffractometry, John Wiley &; Sons Inc., (1996)
92. Hubbard, C. R.; Evans, E. H. Smith, D. K. J. Appl. Cryst. 1976, 9, 169.
93. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309.
94. Bersohn, M.; Baird, J. C. An Introduction to Electron Paramagnetic Resonance, W. A. Benjamin, Inc., (1966)
95. Miclescu, A.; Wiklund, L. J Rom Anest Terap Int 2010, 17, 35.
96. Rosen, G.M.; Rauckman, E.J. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 7346.
97. Nosaka, Y.; Natsui, H.; Sasagawa, M.; Nosaka, A. Y. Phys. Chem. B 2006, 110, 12993.
98. Batzill, M.; Morales, E. H.; Diebold, U. Phys. Rev. Lett. 2006, 96, 026103.
99. Emeline, A. V.; Sheremetyeva, N. V.; Khomchenko, N. V.; Ryabchuk, V. K.; Serphone, N. J. Phys. Chem. C 2007, 111, 11456.
100. Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z.; Hansen, J. Ø.; Matthiesen, J.; Blekinge-Rasmussen, A.; Lægsgaard, B.; Hammer, B.; Besenbacher, F. Science 2008, 320, 1755.
101. Mrowetz, M.; Balcerski, W.; Colussi, A. J.; Hoffmann, R. J. Phys. Chem. B 2004, 108, 17269.
102. Kotsokechagia, T.; Cellesi, F.; Thomas, A.; Niederberger, M.; Tirelli, N.; Langmuir. 2008, 24, 6988.
103. Gopel, W.; Anderson, J. A.; Frankel, D.; Jaehnig, M.; Phillips, K.; Schafer, J. A.; Rocker, G. Surface. Sci. 1984, 139, 333.
104. Depero, L. E. J. Solid State Chem. 1993, 104, 470.
105. Park, J. H.; Kim, S.; Bard, A. J. Nano. Lett. 2006, 6, 24.
106. Li, H.; Zhang, X.; Huo, Y.; Zhu, J. Environ. Sci. Technol. 2007, 41, 4410.
107. Ho, W.; Yu, J. C.; Lee, S. Chem. Commun. 2006, 1115.
108. Ma, T.; Akiyama, M.; Abe, E.; Imai, I. Nano Lett. 2005, 5, 2543.
109. Gopal, N. O.; Lo, H. H., Ke, S. C. J. Am. Chem. Soc. 2008, 130, 2760.
110. Lo, H. H.; Gopal, N. O.; Ke, S. C. Appl. Phys. Lett. 2009, 95, 083126.
111. In, S.; Orlov, A.; Berg, R.; Garcia, F.; Pedrosa-Jimenez, S.; Tikhov, M.S.; Wright, D.S.; Lambert, R. M. J Am. Chem. Soc. 2007, 129, 13790.
112. Gopal, N. O.; Lo, H. H.; Sheu, S. C.; Ke, S. C. J. Am. Chem. Soc. 2010, 132, 10982.
113. Parida, K.; Das, D.P. J. Photochem. Photobio. A 2004, 163, 561.
114. Lin, L.; Zheng, R. Y.; Xie, J. L.; Zhu, Y. X.; Xie, Y. C. Appl. Catal. B 2007, 76, 196.
115. Korosi, L.; Papp, S.; Bertoti, I.; Dekany, I. Chem. Mater. 2007, 19, 4811.
116. Zhao, D., Chen, C. C.; Wang, Y. F.; Ji, H. W.; Ma, W. H.; Zang, L.; Zhao, J. C. J. Phys. Chem. C 2008, 112, 5993.
117. Natori, H.; Kobayashi, K.; Takahashi, M. J. Oleo Sci. 2009, 58, 389.
118. Lin, L.; Lin, W.; Zhu, Y. X.; Zhao, B. Y.; Xie, Y. C. Chem. Lett. 2005, 34, 284.
119. Shi, Q.; Yang, D.; Jiang, Z.; Li, J. J. Mol. Catal. B 2006, 43, 44.
120. Jin, C.; Zheng, R. Y.; Guo, Y.; Xie, J. L.; Zhu, Y. X.; Xie, Y. C. J. Mol. Catal. A 2009, 313, 44.
121. Lv, Y. Y.; Yu, L. S.; Huang, H. Y.; Liu, H. L.; Feng, Y. Y. J. Alloys Compd. 2009, 488, 314.
122. Lin, L.; Lin, W.; Xie, J. L.; Zhu, Y. X.; Zhao, B. Y.; Xie, Y. C. Appl. Catal. B 2007, 75, 52.
123. Yang, K.; Dai, Y.; Huang, B. J. Phys. Chem. C 2007, 111, 18985.
124. Zheng, R. Y.; Lin, L.; Xie, J. L.; Zhu, Y. X.; Xie, Y. C. J. Phys. Chem. C 2008, 112, 15502.
125. Zheng, R. Y.; Guo, Y.; Jin, C.; Xie, J. L.; Zhu, Y. X.; Xie, Y. C. J. Mol. Catal. A 2010, 319, 46.
126. Dean, J. A.; Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill: New York, 1999.
127. Lopez Munoz, M. J.; Soria, J.; Conesa, J. C.; Augugliaro, V. Stud. Surf. Sci. Catal. 1994, 82, 693.
128. Berger, T.; Sterrer, M.; Diwald O.; Knozinger, E.; Panayotov, D.; Thompson, T.L.; Yates, Jr. J. T. J. Phy. Chem. B 2005, 109, 6061.
129. Yu, H. F. J. Phys. Chem. Sol. 2007, 68, 600.
130. Iddir, H.; Ogut, S.; Zapol, P.; Browning, N. D. Phys. Rev. B 2007, 75, 073203.
131. Bennett, R. A.; Stone, P.; Price, N. J.; Bowker, M. Phys. Rev. Lett. 1999, 82, 3831.
132. Li, M.; Hebenstreit, W.; Gross, L.; Diebold, U.; Henderson, M. A.; Jennison, D. R.; Schultz, P. A.; Sears, M. P. Surf. Sci. 1999, 437, 173.
133. Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
134. Rothenberger, G.; Moser, J.; Gratzel, M.; Serpone, N.; Sharma, D. K. J. Am. Chem. Soc. 1985, 107, 8054.
135. Leytner, S.; Hupp, J. T. Chem. Phys. Lett. 2000, 330, 231.
136. Yamakata, A.; Ishibashi, T.; Onishi, H. Chem. Phys. Lett. 2001, 333, 271.
137. Stoll, S.; Schweiger, A. J. Magn. Reson. 2006, 178, 42.
138. Wendt, S.; Sprunger, P.T.; Lira, E.; Madsen, G. K. H.; Li, Z.; Hansen, J. O.; Matthiesen, J.; Blekinge-Rasmussen, A.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science, 2008, 320, 1755. (personal communication from Dr. B. Hammer, Interdisciplinary Nanoscience Center, Aarhus University, Denmark)
139. Morton, J. R.; Preston, K. F. J. Magn. Reson. 1978, 30, 577.
140. Tennant, W. C.; Claridge, R. F. C. J. Magn. Reson. 1999, 137, 122.
141. Grätzel, M. Nature. 2001, 414, 338.
142. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.; Wang, F. J. Am. Chem. Soc. 2004, 126, 14943.
143. Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655.
144. Hernández-Alonso, M. D.; Fresno, F.; Suárez, S.; Coronado, J. M. Energy Environ. Sci. 2009, 2, 1231.
145. Zhou, W.; Liu, H.; Wang, J.; Liu, D.; Du, G.; Cui, J. ACS Appl. Mater. Interfaces 2010, 2, 2385.
146. Bubenhofer, S. B.; Schumacher, C. M.; Koehler, F. M.; Luechinger, N. A.; Grass, R. N.; Stark, W. J. J. Phys. Chem. C 2012, 116, 16264.
147. Xu, Q. C.; Wellia, D. V.; Ng, Y. H.; Amal, R.; Tan T. T. Y. J. Phys. Chem. C 2011, 115, 7419.
148. Zhu, G.; Pan, L. K.; Xu, T.; Sun, Z. ACS. Appl. Mater. Interfaces. 2011, 3, 3146.
149. Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. J. Am. Chem. Soc. 2004, 126, 4782.
150. Qi, L. H.; Li, C. Y.; Chen, Y. J. Chem. Phys. Lett. 2012, 539-540, 128.
151. Wang, Q.; Wen, Z. H.; Li, J. H. Inorg. Chem. 2006, 45, 6944.
152. Li, Q. J.; Zhang, J. W.; Liu, B. B.; Li, M.; Liu, R.; Li, X. L.; Ma, H. L.; Yu, S. D.; Wang, L.; Zou, Y. G.; Li, Z. P.; Zou, B.; Cui, T.; Zou, G. T. Inorg. Chem. 2008, 47, 9870.
153. Dong, W.; Cogbill, A.; Zhang, T.; Ghosh, S.; Tian, Z. R. J. Phys. Chem. B 2006, 110, 16819.
154. Wang, P.; Xie, T. F.; Wang, D. J.; Dong, S. J. Colloid Interface Sci., 2010, 350, 417.
155. Wang, Y.; Wu, M.; Zhang, W. F.; Electrochimica Acta, 2008, 53, 7863.
156. Feist, T. P.; Davies, P. K. J. Solid State Chem. 1992, 101, 275.
157. Yoshida, R.; Suzuki, Y.; Yoshikawa, S. J. Solid State Chem. 2005, 178, 2179.
158. Pavasupree, S.; Suzuki, Y.; Yoshikawa, S.; Kawahata, R. J. Solid State Chem. 2005, 178, 3110.
159. Kolen'ko, Y. V.; Kovnir, K. A.; Gavrilov, A. I.; Garshev, A. V.; Frantti, J.; Lebedev, O. I.; Churagulov, B. R.; Tendeloo, G. V.; Yoshimura, M. J. Phys. Chem. B 2006, 110, 4030.
160. Lin, C. H.; Chao, J. H.; Liu, C. H.; Chang, J. C.; Wang, F. C. Langmuir 2008, 24, 9907.
161. Kiatkittipong, K.; Scott, J.; Amal, R. ACS Appl. Mater. Interfaces, 2011, 3, 3988.
162. Scotti, R.; D’Arienzo, M.; Testino, A.; Morazzoni, F. Appl. Cat. B 2009, 88, 497.
163. Riss, A.; Elser, M. J.; Bernardi, J.; Diwald, O. J. Am. Chem. Soc., 2009, 131, 6198.
164. Yang, K.; Dai, Y.; Huang, B. J. Phys. Chem. C 2007, 111, 12086.
165. Vittadini, A.; Casarin, M.; Selloni, A. J. Phys. Chem. C 2009, 113, 18973.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔