|
[1] D. Binkele-Raible and H. Fernau, A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem, Lecture Notes in Computer Science, Vol. 6072, pp. 328-339 (2010) [2] R. E. Burkard , Y. Lin and G. Rote, The Obnoxious Center Problem on a Tree, SIAM Journal on Discrete Mathematics, Vol. 14, pp. 498-509 (2001) [3] B. Ben-moshe, B. Bhattacharya and Q. Shi, Ecient Algorithms for The Weighted 2-center Problem in a Cactus Graph, Lecture Notes in Computer Science, Vol. 3827, pp. 693-703 (2005) [4] A. Caldwell, A. B. Kahng, S. Mantik, I. Markov, and A. Zelikovsky, On Wirelength Estimations for Row-Based Placement, International Symposium on Physical Design, pp. 4-11 (1998) [5] W. Chou and A. Kershenbaum, A Unied Algorithm for Designing Multidrop Teleprocessing Networks, Proceedings of the third ACM symposium on Data communications and Data networks: Analysis and Design, pp. 148-156 (1973) [6] D. Cieslik, Steiner Minimal Trees, Kluwer Academic Publishers, The Netherlands (1998) [7] X. Cheng and D.-Z. Du, Steiner Trees in Industry, Kluwer Academic Publishers,The Netherlands (2001) [8] D. Cieslik, The Steiner Ratio, Kluwer Academic Publishers, The Netherlands (2001) [9] D.-Z. Du, J. M. Smith, and J. H. Rubinstein, Advances in Steiner Trees, Kluwer Academic Publishers, The Netherlands (2000) [10] J. A. Dei Rossi, R. S. Heiser and N. S King, A Cost Analysis of Minimum Distance TV Networking for Broadcasting Medical Information, RM-6204-NLM, Rand Corporation (1970) [11] L. R. Esau and K. C. Williams, On Teleprocessing System Design: Part II, IBM Systems Journal, Vol. 5, pp. 142-147 (1966) [12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, NY, USA (1979) [13] S. Guha and S. Khuller, Approximation Algorithms for Connected Dominating Sets, Proceedings of the Fourth Annual European Symposium on Algorithms, Vol. 20, pp. 374-387 (1998) [14] R. Hassin and A. Tamir, On The Minimum Diameter Spanning Tree Problem, Information Processing Letters, Vol. 53, pp. 109-111 (1998) [15] A. O. Ivanov and A. A. Tuzhilin, Minimal Networks: The Steiner Problem and Its Generalizations, CRC Press, Boca Raton, Florida (1994) [16] B. Li and M. Toulouse, Maximum Leaf Spanning Tree Problem for Grid Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 73, pp. 181-193 (2010) [17] T. Fujie, An Exact Algorithm for The Maximum Leaf Spanning Tree Problem, Journal Computers and Operations Research, Vol. 30, pp. 1931-1944 (2003) [18] E. Nardelli, G Proietti1 and Peter Widmayer, Finding All the Best Swaps of a Minimum Diameter Spanning Tree Under Transient Edge Failures, Lecture Notes in Computer Science, Vol. 1461, pp. 55-66 (1998) [19] G. Robins and A. Zelikovsky, Minimum Steiner Tree Construction, The Handbook of Algorithms for VLSI Physical Design Automation, Chapter 24, pp. 487-508, CRC Press (2009) [20] C. Payan, M. Tchuente, and N. H. Xuong, Arbres avec un Nombres Maximum de Sommet Pendants , Discrete Mathematics, Vol. 49, pp. 267-273 (1984) [21] J. A. Storer, Constructing Full Spanning Trees for Cubic Graphs, Computers and Operations Research, Vol. 13, pp. 8-11 (1981) [22] S. Solis-Oba, 2-approximation Algorithm for Finding a Spanning Tree with Maximum Number of Leaves, Lecture Notes in Computer Science, Vol. 1461, pp. 441-452 (1998) [23] R. G. Saltman, G. R. Bolotsky and Z. G. Ruthberg, Heuristic Cost Optimization of The Federal Telpaknetwork, Tech. Note 787, National Bureau of Standards, Washington, D.C. (1973) [24] A. Tamir, Improved Complexity Bounds for Center Location Problems on Networks by Using Dynamic Date Structures, SIAM Journal of Disrete Mathematics, Vol. 1, pp. 377-396 (1988)
|