(3.238.96.184) 您好!臺灣時間:2021/05/12 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:石修銘
研究生(外文):Siou-Ming Shih
論文名稱:在雲端運算資料中心中具節能與高服務品質之虛擬機器佈署
論文名稱(外文):Energy Efficient Virtual Machine Deployment with High QoS in a Cloud Data Center
指導教授:陳震宇陳震宇引用關係
指導教授(外文):Jen-Yeu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:73
中文關鍵詞:雲端運算負載平衡伺服器整合虛擬機器實體機器資源管理Live MigrationCloudSim
外文關鍵詞:Cloud ComputingLoad BalancingConsolidationVirtual MachinePhysical MachineResource ManagementLive MigrationCloudSim
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
虛擬化技術目前已被廣泛應用於雲端資料中心,除了可提供更大
量的運算資源外,也可提升實體機器的資源利用率。負載平衡(Load
Balancing)機制的目標為解決資料中心中的實體機器負載不平衡的狀
況,避免某些實體機器的負載過重而導致服務品質下降,提升整體系
統的穩定度與可用性,維持一定程度的服務品質;伺服器整合
(Consolidation)機制的目標為解決資料中心的大量能源消耗與提升實
體機器的資源利用率。在雲端資料中心中,負載平衡與伺服器整合均
可透過虛擬機器的即時遷移(Live Migration)來完成。由於負載平衡與
伺服器整合為兩項不同目標與執行方式的管理機制,對於雲端服務供
應商來說,如何在兩項機制間取得折衷的結果是非常重要的。在本篇
論文中,我們透過限制虛擬機器的遷移條件以及限制虛擬機器與實體
機器的數量比,減少虛擬機器的搬遷與限制伺服器整合的程度,並且
針對實體機器的資源剩餘量與虛擬機器的資源使用量進行評分的方
式,為虛擬機器挑選最適合的遷移目標,達到節能與高服務品質的目
標,並同時減少實體機器間資源利用率的差距。
Virtualization technique that is used for sharing physical resources
and hence increasing the resource utilization is one of the key factors of
the recent success of cloud computing. In particular, the effective
deployment of virtual machines (VMs) in a cloud data center could
maximize the effectiveness of the shared resources and
achieve economies of scale of cloud computing. In this thesis, we propose
an energy-aware algorithm for effective VM deployment to provide users
high quality of service (QoS). In a data center, when physical servers are
in low loading, to save energy cost, consolidation that migrate all the
VMs to a small number of physical servers and turn off or hibernate other
physical server is a way the save energy. However, improper sever
consolidation may overload physical servers and increase the chance of
violation of user Service Level Agreement (SLA violation), degrading the
user QoS. Furthermore, in a data center, load balance amid physical serer
is also an important task for fault tolerance. In this thesis, by real-time
monitoring the available resources in physical servers and adequately
designing the priority of each VM and physical server, we propose
effective VM off loading and migration mechanism. The intense
simulation is carried out on the cloud simulator, CloudSim. The
simulation results show that our algorithms provide much better user QoS
(much less SL violation) while in the similar or less energy cost compared
to other representative algorithms in the literature.
摘要 .............................................................................................................................. I
誌謝 ............................................................................................................................IV
文字目錄 .................................................................................................................... V
圖目錄...................................................................................................................... VII
表目錄......................................................................................................................... X
第一章 緒論 .............................................................................................................. 1
1-1 前言................................................................................................................ 1
1-2 研究動機........................................................................................................ 4
第二章 相關研究 ..................................................................................................... 7
第三章 CLOUDSIM ............................................................................................ 21
3-1 CLOUDSIM 系統架構 ................................................................................... 21
3-2 CLOUDSIM 設計與執行 ............................................................................... 23
3-3 總結.............................................................................................................. 24
第四章 演算法設計 .............................................................................................. 25
第五章 模擬結果比較 ......................................................................................... 35
5-1 模擬環境設置.............................................................................................. 35
5-2 PLANET LAB 記錄檔模擬 ............................................................................. 38
5-3 隨機使用率模擬.......................................................................................... 44
5-4 隨機高使用率模擬...................................................................................... 52
5-5 特殊情況模擬.............................................................................................. 59
第六章 結論 ............................................................................................................ 67
REFERENCE ......................................................................................................... 69
作者簡歷 ................................................................................................................... 73
[1] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud
Computing,” technical report No.UCB/EECS-2009-28, EECs
department,U.C. Berkeley, Feb 2009
[2] Peter Mell, Timothy Grance, ” The NIST Definition of Cloud
Computing”
[3] http://www.google.com/intx/zh-TW/enterprise/apps/business/
[4] Amazon EC2 http://aws.amazon.com/ec2/
[5] Windows Azure http://www.microsoft.com/taiwan/windowsazure/
[6] Khiyaita, A. ; Zbakh, M. ; El Bakkali, H. ; El Kettani, D., ”
Load balancing cloud computing: State of art,” Network Security
and Systems (JNS2), April 2012
[7] Nuaimi, K.A., Mohamed, N., Nuaimi, M.A., Al-Jaroodi, J., “A
Survey of Load Balancing in Cloud Computing: Challenges and
Algorithms,” Network Cloud Computing and Applications (NCCA),
Dec 2012
[8] Mishra, M., Das, A., Kulkarni, P., Sahoo, A., “Dynamic resource
management using virtual machine migrations,” Communications
Magazine, IEEE, Oct 2012
[9] Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I,
Warfield A (2005) Live migration of virtual machines. In: Proc of
NSDI
[10] Xen http://www.xenproject.org/
[11] VMware http://www.vmware.com/
[12] Yi Zhao, Wenlong Huang, ”Adaptive Distributed Load Balancing
Algorithm Based on Live Migration of Virtual Machines in Cloud,”
INC, IMS and IDC, 2009. NCM '09. Fifth International Joint
Conference on
[13] Mohammad H. Al Shayeji, M.D. Samrajesh, “An Energy-aware
Virtual Machine Migration Algorithm,” Advances in Computing
and Communications (ICACC), 2012 International Conference on
[14] Nishant, K. P. Sharma, V. Krishna, C. Gupta, KP. Singh, N. Nitin
and R. Rastogi, "Load Balancing of Nodes in Cloud Using Ant
Colony Optimization." In proc. 14th International Conference on
Computer Modelling and Simulation (UKSim), IEEE, pp: 3-8,
March 2012
[15] Kejiang Ye, Dawei Huang, Xiaohong Jiang, Huajun Chen, Shuang
Wu, “Virtual Machine Based Energy-Efficient Data Center
Architecture for Cloud Computing: A Performance Perspective,”
Proceedings of the 2010 IEEE/ACM Int'l Conference on Green
Computing and Communications &; Int'l Conference on Cyber,
Physical and Social Computing, p.171-178, December 18-20, 2010
[16] Fei Ma, Feng Liu, Zhen Liu,” Virtual Machine Based Energy
Efficient Data Center Architecture for Cloud Computing: A
Performance Perspective,” Green Computing and Communications
(GreenCom), 2010 IEEE/ACM Int'l Conference on &; Int'l
Conference on Cyber, Physical and Social Computing (CPSCom)
[17] Anton Beloglazov, Rajkumar Buyya, “Optimal Online
Deterministic Algorithms and Adaptive Heuristics for Energy and
Performance Efficient Dynamic Consolidation of Virtual Machines
in Cloud Data Centers”, Concurrency and Computation: Practice
and Experience (CCPE), Volume 24, Issue 13, Pages: 1397-1420,
John Wiley &; Sons, Ltd, New York, USA, 2012
[18] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F.
De Rose, and Rajkumar Buyya, “CloudSim: A Toolkit for
Modeling and Simulation of Cloud Computing Environments and
Evaluation of Resource Provisioning Algorithms,” Software:
Practice and Experience, Volume 41, Number 1, Pages: 23-50,
ISSN: 0038-0644, Wiley Press, New York, USA, January 2011
[19] K.Bubendorfer and J.H.Hine., "A Compositional Classification for
Load-Balancing Algorithms", Technical Report CS-TR-99-9 31,
July 1998
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔