跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/21 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡博宇
研究生(外文):Po-Yu Tsai
論文名稱:C+L 寬頻帶摻鉺光纖放大器之增益箝制特性探討
論文名稱(外文):Gain Clamping Characteristic of C+L Broadband Erbium Doped Fiber Amplifier
指導教授:董正成
指導教授(外文):Jeng-Cherng Dung
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:89
中文關鍵詞:增益箝制特性摻鉺光纖放大器C+L 寬頻帶
外文關鍵詞:Gain Clamping CharacteristicErbium Doped Fiber AmplifierC+L Broadband
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文為C+L 寬頻帶摻鉺光纖放大器之增益箝制特性探討,實驗首先須達到C頻帶(C band)加上L頻帶(L band) 寬頻帶增益放大,架構以摻鉺光纖 5.5m 為基底的摻鉺光纖放大器 (Erbium Doped Fiber Amplifier, EDFA),訊號以C+L 寬頻帶多波長方式輸入訊號,輸入功率為 -5 dBm ~ -20 dBm,pump選用波長為980nm、功率為 200 mW,利用C/L 耦合器(coupler)分流C-band與L-band訊號,並以double-pass方式提升L-band增益,改善摻鉺光纖放大器對於L-band放大的不足。
當C+L 寬頻帶摻鉺光纖放大器完成後,接著為了達到增益箝制的效果,在架構中加入環型共振腔,藉由利用原先摻鉺光纖放大器在放大過程中所產生的放大自發性輻射(Amplified Spontaneous Emission, ASE)來產生特定雷射箝制增益。實驗會加入環型共振腔於架構中,觀察使用不同的元件中箝制增益的變化,嘗試選擇不同的架構方式、輸入訊號方式、輸入功率(Input power)、光纖布拉格光柵(Fiber Bragg Grating, FBG)、pumping 波長、增益介質,找到最理想的箝制架構。
最後實驗結果可以證實,將環型共振腔放置摻鉺光纖放大器外部,增益介質摻鉺光纖長度為3m,幫浦波長選用1480nm、200mW,光纖布拉格光柵選用1540.355nm,增益可呈現均等化現象,箝制範圍為-5dBm~-25 dBm,其增益峰值 位於1575nm、19.51 dB,雜訊為6.14 dB。
本論文研究C+L 寬頻帶摻鉺光纖放大器之增益箝制特性,如上所述藉由使用C+L 寬頻帶摻鉺光纖放大器,其改善C-band與L-band訊號增益放大與箝制功能,增加了光纖通訊的傳輸容量與可選擇更大的輸入功率範圍,在Wavelength Division Multiplexing (WDM)的傳輸系統的使用上更佳便利。

This paper was titled “Gain Clamping Characteristic of C+L Broadband Erbium Doped Fiber Amplifier.” In this study, we first measured the gain with C+L broadband completed. The experimental setup used 5.5m erbium doped fiber (EDF) by using C/L coupler to divide C-band one - pass and L-band double - pass. Thus, we could improve the gain for L-band amplification. The pump wavelength and pump power are 980nm and 200mw respectively.

To reach gain clamping, when the C+L broadband EDFA completion was needed. We used Amplified Spontaneous Emission (ASE) to create by the C+L broadband EDFA feedback into the ring cavity. It could produce the clamping laser to reach gain clamping. In the ring cavity, we observe gain clamping variation in different devices to try more structures, single and multi-input signals, input power, fiber Bragg grating(FBG), pumping wavelength, and gain medium to find the best clamp structure.

This experiment proofed that the gain could be clamped with equalization by using ring cavity structure. Therefore, this experiment result showed that the gain clamping range from -5~-25dBm could be reached and the gain peak at the wavelength 1575nm was 19.51dB. Also, the noise figure was 6.14dB. So, we chose 3m EDF, 1480nm 200mW and 1540.355nm for the gain medium, pump parameters and FBG respectively.

We proposed amplifier could offer significant implications as stated above, which can improved C+L broadband amplification and clamping result. The gain and clamping wavelength range was added, it was be increased the transmission capacity and can choose wider range for input power in the use of WDM transmission system is more convenient.


致謝
摘要
Abstract
目錄
圖目錄
第一章 序論
1.1研究背景
1.2研究動機
1.3論文架構
第二章 光纖通訊的歷史發展、元件特性及種類
2.1 光纖通訊的歷史發展
2.2光纖的特性說明
2.2.1 光纖損耗
2.2.1.1 本質吸收損耗
2.2.1.2 散射損耗(Scattering loss)
2.2.1.3 幾何效應
2.2.2 光纖色散
2.2.2.1材料色散 (Material Dispersion)
2.2.2.2導波管色散 (Waveguide dispersion)
2.2.2.4模態間色散 (Modal Dispersion)
2.2.3光纖非線性效應(Fiber Nonlinear Effect)
2.2.4光纖非線性效應分類
2.2.4.1受激拉曼散射(Stimulated Raman Scattering, SRS)
2.2.4.2受激布里淵散射(Stimulated Brillouin Scattering, SBS)
2.2.4.3四波混合(Four-Wave Mixing, FWM)
2.2.4.4自我相位調變(Self-Phase Modulation)
2.2.4.5雙重雷利散射((Double Rayleigh Scattering, DRS)
2.3光纖種類
2.3.1單模光纖(Single-Mode Fiber, SMF)
2.3.2色散補償光纖(Dispersion Compensation Fiber, DCF)
2.3.3色散位移光纖(Dispersion Shift Fiber, DSF)
2.3.4非零色散光纖(Non-Zero Dispersion Shift Fiber, NZDSF)
2.3.5摻鉺光纖(Erbium-Doped Fiber, EDF)
2.3.6極化保持光纖(Polarization Maintaining Fiber)
2.4光纖元件說明
2.4.1光衰減器(Attenuator)
2.4.2光循環器(Circulator)
2.4.3光耦合器(Coupler)
2.4.4分波多工器(Wavelength Division Multiplexing, WDM)
2.4.5光纖布拉格光柵(Fiber Bragg Grating, FBG)
2.5光纖放大器的種類介紹
2.5.1半導體光放大器 (Semiconductor Optical Amplifier, SOA)
2.5.2拉曼光纖放大器(Raman Fiber Amplifier, RFA)
2.5.3摻鉺光纖放大器(Erbium Doped Fiber Amplifier, EDFA)
第三章 光纖放大器原理說明
3.1摻鉺光纖放大器 (Erbium Doped Fiber Amplifier, EDFA)
3.1.1摻鉺光纖放大器的放大機制
3.1.2放大自發輻射(Amplified Spontaneous Emission , ASE)
3.1.3增益飽和(Gain Saturation)
3.1.4雜訊指數(Noise Figure , NF)
3.2 增益箝制原理
第四章 傳統摻鉺光纖放大器增益量測與分析
4-1 傳統摻鉺光纖放大器實驗架構
4.2實驗結果
第五章 C+L 寬頻帶摻鉺光纖放大器增益量測與分析
5-1 C+L 寬頻帶摻鉺光纖放大器實驗架構
5-2 C+L 寬頻帶摻鉺光纖放大器 量測結果
5-3 C+L 寬頻帶摻鉺光纖放大器分析與比較
第六章C+L寬頻帶摻鉺光纖放大器增益箝制量測與分析
6-1 C+L寬頻帶摻鉺光纖放大器使用內部共振腔增益箝制實驗架構
6-2 C+L寬頻帶摻鉺光纖放大器使用內部共振腔增益箝制量測結果
6-3C+L寬頻帶摻鉺光纖放大器使用內部共振腔 增益箝制實驗架構分析
6-4 C+L寬頻帶摻鉺光纖放大器使用外部共振腔增益箝制實驗架構
6-5 C+L寬頻帶摻鉺光纖放大器使用外部共振腔 增益箝制量測結果
6-5-1FBG的選用
6-5-2增益介質的選用
6-6 C+L寬頻帶摻鉺光纖放大器使用內部共振腔增益箝制實驗架構分析
第七章 結果與討論
參考文獻

[1]R.H.Stolen and E.P.Ippen,”Raman Gain ib Glass Optical Waveguides”,Applied
Physics letters,Vol.22,NO.6,pp.276-278,1973
[2]E.Desurvire,”Erbium-Doped Fiber Amplifiers Principles and Applications”,Wiley-Interscience,1994.
[3] C. X. San , H. Ahmad and S. W. Harun, “Wide-band Bismuth based Erbium
doped Fiber Amplifier for DWDM Applications”, IEEE(TECHPOS), 2009, pp.
1-3
[4] Y. Kong, C. Deng, Y. Ma, and B. Guo, “Wide band gain flattening Yb3+ -doped
fiber amplifier”, Optics Communications, vol. 284, pp. 869-872, 2011.
[5] S.W. Harun, M. C. Paul, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra,
H. Ahmad, S. Yoo, M.P. Kalita, A. J. Boyland, and J. K. Sahu, “Double-pass
erbium-doped zirconia fiber amplifier for wide-band and flat-gain operations”, Optics and Laser Technology, vol. 43, pp. 1279-1281, 2011.
[6] P. R. Kaczmarek, T. Rogowski, E. Kopczynski, P. Karnas, and K. M. Abramski,
“High output power Erbium-Ytterbium Doped Fibre amplifier”, IEEE Anniversary International Conference on Transparent Optical Networks, vol. 4, pp. 350-352, 2008.
[7] X. S. Cheng, R. Parvizi, H. Ahmad, and S. W. Harun, “Wide-band Bismuth-based
Erbium-doped fiber amplifier with a flat-gain characteristic”, IEEE Photonics Journal, vol. 1, pp. 259-264, 2009.
[8] Abu Bakar M. H, Abas A. F., Mokhtar M.Utilization, “Utilization of stimulated
Raman Scattering as secondary pump on hybrid remotely-pump L-band Raman/erbium-doped fiber amplifier”, Laser Physics, vol. 21, pp. 722-728, 2011.
[9] W. C. Huang, C. H. Huang, X. L. Wang, B. R. Zheng, H. Y. Xu, Z. P. Cai, “A
C+L-band erbium-doped fiber ASE source using dual-forward pumping configuration”, Optical Fiber Communication and Optoelectronics Conference, 2007, pp.391-393
[10] S. S. Pathmanathan, S. Z. Muhd-Yassin, H. A. Abdul-Rashid, P. K. Choudhury
“An experimental investigation of the gain spectrum of erbium-doped fiber amplifiers under various system configurations”, Optik, Vol. 121, 2008, pp. 184-187
[11] H. Liqun, Y. Guang, L. Yazhen, G. Jun, and L. Zhihua, “L-Band EDFA with
High Saturation Output Power and Low Noise Figure”, Computer Design and Applications (ICCDA), Vol. 4, 2010, pp. 537-539
[12] M. R. Haleem, M. H. Al-Mansoori, M. Z. Jamaludin, F. Abdullah, and N. Md
Din, “High gain double-pass L-band EDFA with dispersion compensation as feedback loop”, Laser Physics, vol. 21, pp. 419-422, 2011.
[13] B. Bouzid, “High-gain and low-noise-figure Erbium-doped fiber amplifier
employing dual stage quadruple pass technique”, Optical Review, vol. 17, pp. 100-102, 2010.
[14] C. M. Hung, N. K. Chen, Y. C. Lai, and S. Chi, “High-gain low-noise tunable
EDFA over S- and C+L-bands with double-pass configuration”, Lasers and Electro-Optics, pp. 1-2, 2007.
[15] C. L. Chang, L. Wang, Y. J. Chiang, “A dual pumped double-pass L-band EDFA
with high gain and low noise”, Optical Communications, vol. 267, pp. 108-112, 2006.
[16] S. C. Tsai, T. C. Tsai, and P. C. Law, “High pumping-efficiency L-band
Erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration”, IEEE Photonics Technology Letters, vol. 15, pp. 197-199, 2003.
[17] S. Hwang, K. W. Song, H. J. Kwon, J. Koh, Y. J. Oh, and K. Cho, “Broad-band
Erbium-doped fiber amplifier with double-pass configuration”, IEEE Photonics Technology Letters, vol. 13, pp. 1289-1291, 2001.
[18] 董德國,陳萬青 譯, “光纖通訊”,第二版, 東華書局,2005
[19] 李銘淵 著, “光纖通信概論”,第三版, 全華圖書,2008.
[20] S. O. Kasap, “Optoelectronics and photonics”, Prentice Hall, 2001.
[21] 童彥涵, “混和型拉曼與摻鉺光纖放大器的最佳化設計” 國立東華大學電機
工程研究所碩士論文,2011.
[22] 陳瑞鑫,陳鴻仁 著, “光通訊原理與技術”, 全華科技圖書,2004.
[23] 吳秉昇, “高增益L波段摻鉺光纖/拉曼放大器在波長多工傳輸之研究” 國立
東華大學電機工程研究所碩士論文,2009.
[24] J. Wilson and J. Hawks, “Optoelectronics – an introduction, third edition”, Prentice Hall, 2003.
[25]D.K.Mynbaev and L.L.Scheiner,”Fiber-Optic Communications Technology”,Prentice Hall,2001
[26] 李定鴻, “L-band 摻鉺光纖放大器增益箝制架構及最佳參數之研究” 國立東華大學電機工程研究所碩士論文2011.
[27] 梁哲維, “A C+L broadband and gain flatten EDFA with one pass C-band and double pass L-band” 國立東華大學電機工程研究所碩士論文,2012
[28] 戴呈臻, “高增益L波段摻鉺光纖/拉曼放大器在波長多工傳輸之研究” 國立東華大學電機工程研究所碩士論文,2012.
[29] E. Desurvire, “Analysis of transient gain saturation and recovery in
erbium-doped fiber amplifiers,” IEEE Photonics Technology Letters, vol. 1, pp. 196-199, 1989.
[30] 簡佑任, “寬頻與增益平坦色散補償拉曼/摻鉺光纖混合放大器及全光增益箝制在WDM系統的設計” 國立東華大學電機工程研究所碩士論文,2008
[31] 蔡宗縉, “使用混和型拉曼與摻鉺光纖放大器之分光激發架構之研究” 國立東華大學電機工程研究所碩士論文,2010.
[32] C. X. San, H. Ahmad and S. W. Harun, “Wide-band Bismuth based Erbium doped Fiber Amplifier for DWDM Applications”, Technical Postgraduates, pp. 1-3, 2009.
[33] H. Liqun, Y. Guang, L. Yazhen, G. Jun, and L. Zhihua, “L-Band EDFA with High Saturation Output Power and Low Noise Figure”, Computer Design and Applications, vol. 4, pp. 537-539, 2010.
[34] G. P. Agrawal, “Fiber-Optical Communication System”, Wiley-Interscience , third edition 2003.
[35] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface wavequides for optical frequencies”, Proc. IEEE, vol. 113, pp. 1151, 1966.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top