( 您好!臺灣時間:2024/02/28 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yao-Chang Chiang
論文名稱(外文):Design of A 20/40GHz Dual-Band Push-Push VCO and A 20GHz Dual-Couple QVCO
指導教授(外文):Chu-Hsuan LinRo-Min Weng
外文關鍵詞:VCOK band
  • 被引用被引用:5
  • 點閱點閱:572
  • 評分評分:
  • 下載下載:169
  • 收藏至我的研究室書目清單書目收藏:0
為縮短人與人之間距離,人們透過無線通訊系統進行語音溝通或影像交流訊息頻繁,高解析度多媒體影像使得資料傳輸量更是巨量化。此外,衛星定位功能對人類提供所在位置的便利性亦不可或缺。隨著科技進步,高頻通訊系統標準化的制定發展迅速,通訊系統晶片市場需求增加,無線通訊電子產品已然成為生活必需品。無線通訊系統中前端收發訊號的射頻電路設計朝向低功率、小面積、低相位雜訊等目標,其中以壓控振盪器(Voltage-controlled Oscillator;VCO)尤其重要。本論文將探討應用於WirelessHD系統與衛星通信K頻帶之壓控振盪器的設計,晶片模擬驗證採用台灣積體電路製造公司(tsmc)0.18um 1P6M CMOS製程技術。
本論文所提出第一顆晶片為「低相位雜訊雙頻帶雙推挽式壓控振盪器」。雙頻操作頻率分別是18.0~20.0 GHz與36.0~40.0 GHz,主要應用於二次降頻的混頻器。設計上採用特殊的雙推式架構,使得40.0 GHz二次諧波輸出功率仍有-14.5 dBm。為了使電路有良好的相位雜訊,在核心電路設計上採用開關式電容,能有效提升核心電路的品質因素,距離載波頻率1 MHz處的低頻相位雜訊分別是-100 dBc/Hz與-106 dBc/Hz。
本論文所提第兩顆晶片為「低功耗雙耦合正交四相位壓控振盪器」。採用尾端耦合電容技術,有效降低偏壓電流與功耗,並在四相位正交設計上結合了主動式與被動式正交的優點,達到低相位誤差0.7~4.2度的輸出。整體電路量測功耗為5.15 mW,可調頻率範圍為19.9~21.5 GHz,距離載波中心頻率1 MHz處的相位雜訊量測值為-100.1 dBc/Hz。
To shorten the communication distance between people, more and more signals of voices and images are sent back and forth through wireless systems. The data transmission of high-definition (HD) multimedia image becomes huge. Besides, the global position systems (GPS) which provides location of objects are useful nowadays. With the advance of technology, the standards of high frequency communication systems develop rapidly. The requirements of front-end transceivers in wireless communication systems are low power, small size, low phase noise, etc. The local oscillation signals provided by frequency synthesizers and voltage-controlled oscillators are one of the important building blocks in communication systems. This thesis is focused on the VCO design for WirelessHD and K-band satellite communications systems. The VCO chips are simulated and fabricated by using tsmc 0.18um 1P6M CMOS process technology.
The first chip is a low phase noise dual band push-push VCO. The operated frequency band of the proposed dual-band VCOs are from 18.0 GHz to 20.0 GHz at fundamental signals and from 36.0 GHz to 40.0 GHz at second harmonic signals. The dual-band VCO is applied for the double down-conversion mixers in wirelessHD systems. Using special push-push architectures, the output power of the 40.0 GHz second harmonic signals is -14.5 dBm. In addition, the core circuit using switched capacitor can effectively improve the quality factor of oscillator. The phase noise of high band and low band are -100 dBc/Hz and -106 dBc/Hz at 1MHz carrier frequency, respectively.
The second chip is a low power dual-coupled quadrature VCO (QVCO). Using a bottom-series coupling capacitor technology, the bias current can be reduced effectively so as to save the power consumption. A dual cross coupling method which combines both active and passive coupling paths has the advantages of decreasing the phase error to 0.7~4.2 degrees. The circuit power consumption is only 5.15 mW. The tuning range is from 19.9 GHz to 21.5 GHz. The phase noise at 20.6 GHz is -100 dBc/Hz for 1 MHz offset frequency.
中文摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 序論 1
1.1 研究背景與動機 1
1.2 WirelessHD系統簡介 2
1.3 K頻帶簡介 3
1.4 論文架構 5
第二章 壓控振盪器介紹與原理分析 7
2.1 壓控振盪器介紹 7
2.2.1 振盪器分析 7
2.2.2 環型振盪器(Ring Oscillator) 9
2.2.3 電容電感諧振振盪器(LC-Tank Oscillator) 10
2.2.4 傳統LC-Tank振盪器簡介 12
2.2.5 傳統四相位LC-Tank振盪器簡介 13
2.2 壓控振盪器的相位雜訊 16
2.2.1 相位雜訊的定義 16
2.2.2 相位雜訊對通訊系統的影響 18
2.2.3 相位雜訊分析-熱雜訊[10] 19
2.2.4 相位雜訊分析-閃爍雜訊[10] 22
2.2.5 相位雜訊分析-散彈雜訊[13] 27
2.3 壓控振盪器之特性參數 28
第三章 低相位雜訊雙頻帶雙推挽式壓控振盪器之設計 31
3.1 低相位雜訊雙頻帶雙推挽式壓控振盪器之設計器介紹 31
3.1.1 電路架構與設計 32
3.1.2 模擬環境 37
3.1.3 元件選擇 37
3.1.4 緩衝電路 38
3.1.5 模擬結果 40
3.1.6 電路佈局 47
3.1.7 晶片量測與結果討論 49
第四章 K頻帶雙耦合四相位壓控振盪器之設計 58
4.1 K頻帶雙耦合四相位壓控振盪器設計介紹 58
4.1.1 電路架構與設計 58
4.1.2 模擬環境 63
4.1.3 模擬結果 64
4.1.4 電路佈局 68
4.1.5 晶片量測與結果討論 69
第五章 結論與未來研究方向 75
5.1 結論 75
5.2 未來研究方向 76
參考文獻 77
[1]B.Razavi,RF Microelectronics,2nd Edition,Pearson Education,Inc.,2012.
[3]王智弘,2011 Feb.,
[4]National Radio Astronomy Observatory, 2004. Dec.,
[6]B. Razavi, Design of Analog CMOS Integrated Circuits, Ed. McGRAW-Hill, 2001.
[7]N. M. Nguyen and R. G. Meyer ,“Start-up and Frequency Stability in High-Frequency Oscillator,” IEEE J. Solid-State Circuits, vol. 27, no. 5, May 1992, pp. 810-820.
[8]Chan Tat Fu and Howard C. Luong ,“A 0.8-V CMOS Quadrature LC VCO Using Capacitive Coupling,” IEEE Asian Solid-State Circuits Conference, Nov. 2007, pp. 436-439.
[9]D. B. Leeson ,“A Simple Model of Feedback Oscillator Noise Spectrum,” IEEE RFIC Virtual Journal, vol. 54, no. 20, Feb. 1966, pp. 329-33.
[11]J. J. Rael and A. A. Abidi ,“Physical Processes of Phase Noise in Differential LC Oscillator,” IEEE Custom Integr. Circuit conf., pp. 569-572, May 2000.
[12]A. Hajimiri and T. H. Lee ,“A General Theory of Phase Noise in Electrical Oscillator,” IEEE J. Solid-State Circuits, vol. 33, no. 4, pp. 179-194, Feb. 1998.
[14]Shu-Wei Chu and Chorng-Kuang Wang ,“An 80 GHz Wide Tuning Range Push-Push VCO With gm-Boosted Full-Wave Rectification Technique in 90 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, April 2012, pp. 203-205.
[15]Congyin Shi, Huaizhou Yang, Huiling Xiao, Junhua Liu, and Huailin Liao ,“A Dual Loop Dual VCO CMOS PLL Using a Novel Coarse Tuning Technique for DTV,” International Conference on Solid-State and Integrated-Circuit Technology, pp. 1597-1600, Oct. 2008.
[16]Chun-Wei Kuo, and Zhi-Ming Lin ,“A Single Signal Controlled Dual-band VCO for WiMAX Applications ,” IEEE International Symposium on Circuits and Systems, pp. 1787-1790, May 2009.
[17]Chao Lu, Jing Jin,Cui Mao and Dongpo Chen ,“Wide Band Voltage-Controlled Oscillator for Multi-Band Multi-Mode GNSS Receivers,” IEEE International Conference on Solid-State and Integrated Circuit Technology, pp.755-757, Nov. 2010.
[18]Xinrong Hu, Fengyi Huang, Tao Li, and Xusheng Tang ,“A Dual-Band LC VCO Using a Switched Current Source for IMT-Advanced and UWB Applications,” International Symposium on Signals Systems and Electronics, pp.1-4, Sept. 2010.
[19]Ko-Chi Kuo ,“A Wide Tuning Range 2.2 to 2.8 GHz VCO with the Phase Noise Enhanced Techniques,” Asia-Pacific Microwave Conference, pp. 781 - 784, Dec. 2011.
[20]Xin Tang, Fengyi Huang, Mingchi Shao, and Youming Zhang ,“A Wideband 0.13um CMOS LC-VCO for IMT-Advanced and UWB Applications,” IEEE MTT-S, pp.1-4, Sept. 2012.
[21]Seok-Ju Yun , Hui Dong Lee , Kwi-Dong Kim , Sang-Gug Lee ,Jong-Kee Kwon ,“A Wide-Tuning Dual-Band Transformer-Based Complementary VCO,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 6, June 2010, pp. 340-342.
[22]Ching-Yuan Yang , Chih-Hsiang Chang , Jung-Mao Lin and Hsuan-Yu Chang , “A 20/40-GHz Dual-Band Voltage-Controlled Frequency Source in 0.13-um CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, Aug. 2011, pp. 2008-2016.
[23]Buadana, N. and Socher, E. ,“A Triple Band Travelling Wave VCO Using Digitally Controlled Artificial Dielectric Transmission Lines,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 1-4, June 2011.
[24]Szu-Ling Liu , Kuan-Han Chen and Chin, A. ,“A Dual-Resonant Mode 10/22-GHz VCO With a Novel Inductive Switching Approach,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, July 2012, pp. 2165-2177.
[25]國家晶片系統設計中心 ,“CMOS EM Substrate Setup and Transmission Line Simulation Method,” pp. 11-16, Dec. 2009.
[26]B. Soltanian and P. Kinget ,“A Low Phase Noise Quadrature LC VCO Using Capacitive Common-Source Coupling,” European Solid-State Circuits Conference, pp. 436-439, Sept. 2006.
[28]Markus Törmänen and Henrik Sjöland ,“A 24-GHz quadrature receiver front-end in 90-nm CMOS,” Asia-Pacific Microwave Conference, pp.1152-1155, Dec. 2009.
[29]Shadi Saberi and Jeyanandh Paramesh ,“A 11.5-22GHz Dual-Resonance Transformer-coupled Quadrature VCO,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 1-4, June 2011.
[30]Hong-Yeh Chang and Yuan-Ta Chiu ,“K-Band CMOS Differential and Quadrature Voltage-Controlled Oscillators for Low Phase-Noise and Low-Power Applications.” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, Jan. 2012, pp. 46-59.
[31]Hong-Yeh Chang, Chi-Hsien Lin, Yu-Cheng Liu, Yeh-Liang Yeh, Kevin Chen and Szu-Hsien Wu, “65-nm CMOS Dual-Gate Device for Ka-Band Broadband Low-Noise Amplifier and High-Accuracy Quadrature Voltage-Controlled Oscillator,” IEEE Microwave Theory and Techniques vol. 61, no. 6, June 2013, pp. 2402-2413.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top