跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄂海萍
研究生(外文):Hai-Ping E
論文名稱:理論計算之硼原子和丙烯反應路徑以及釕(II)與非對稱數控夾擊配體和鉑(II)配合CCC夾擊配體複合物的電子結構
論文名稱(外文):Theoretical study of reaction of boron atom and propylene, and the electronic structure of ruthenium(II) complexes with unsymmetric CNC’ pincer ligands and platinum(II) complexes with CCC pincer ligands
指導教授:張秀華張秀華引用關係
指導教授(外文):Hsiu-Hwa Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:109
中文關鍵詞:
外文關鍵詞:Boronrutheniumplatinum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
The reaction of the ground state atomic boron, B (2P) with propylene CH3CHCH2 (1A) has been investigated by ab initio electronic structure calculation for expecting reaction pathways and RRKM theory rate constant. The pathways of isomerizations and dissociations for three collision complexes c1, c2 and c3 are characterized by the B3LYP/cc-pVTZ and the CCSD/cc-pVTZ calculations. The rate equations of the reaction mechanisms are solved for the concentration evolutions, and product branching ratio. This study predicts the B (2P) + CH3CHCH2 (1A) reaction would produce CH2CHBCH2 (p2) + H, CH3CBCH (p26) + H, and CH3CCBH2 (p27) + H. The yield of branching ratios of p2:p26:p27 are 1:0.02:0.002 at zero kcal/mol collision energy. It indicates the B (2P) + CH3CHCH2 (1A) reaction would be an efficient paths for the p2.


The spectroscopic properties and electronic structure of the [Ru(L1)2] and [(MeCCCMe)Pt(CH3CN)] were research by ab initio calculations. From density function theory(DFT), Hartree-Fock(HF) and single-excitation configuration interaction(CIS), we obtained the optimized structures of the singlet and triplet states.
Both two complexes, the Frank-Condon factor calculations were carried out simulated emission and absorption spectrum. The results compared with the experiment.

Table of Contents
Abstract
Table of Contents……………………………………………………………………….I
Chapter1. Theoretical study of boron atom and propylene
1. Introduction………………………………………………………………………...1
2. Theoretical methods………………………………………………………………..3
2.1 Ab initio electronic calculations…………..………..……..…………………3
2.2 Coupled-cluster Single and doubles (CCSD)…………………….……....…3
2.3 RRKM rate constant calculations …………………………..…………....…3
2.4 Solution of the rate equations: concentration evolutions and branching ratios………………………………………………...………..…………....…4
3. Result and Discussions……………………………………………………………..5
3.1 Collision complexes..…………………………………………………….……5
3.1.1 c1………………………………………………………………………...5
3.1.2 c2………………………………………………………………………...6
3.1.3 c3………………………………………………………………………...6
3.2 Reaction pathways……………………………………………………………...7
3.2.1 H and H2 dissociation products……………………………………….....7
3.2.2 Reaction paths and the most probable paths……………………….......7
3.2.2.1 c1 paths………………………………………................................7
3.2.2.2 c2 paths………………………………………................................8
3.2.2.3 c3 paths………………………………………................................9
3.2.2.4 The most probable paths……………………...............................10

3.3 Reaction mechanism…………………..………….............................................10
3.4 Concentration evolutions…………………………….......................................10
3.5 Comparison with the reaction of B+C2H4…………………………...…..........12
4. Conclusion…………………………………………………………………………13
Reference……………………………………………………..………………………..15
Table I. …………………………………………………………………………….18
Table II.....………………………………………………………………………….21
Figure 1. …………………………………………………………………………...25
Figure 2. …………………………………………………………………………...26
Figure 3. …………………………………………………………………………...27
Figure 4. …………………………………………………………………………...28
Figure 5. …………………………………………………………………………...32
Figure 6. …………………………………………………………………………...38
Figure 7. …………………………………………………………………………...43
Figure 8. …………………………………………………………………………...45
Figure 9. …………………………………………………………………………...49
Figure 10. ……………………………………………………………..…………...53
Figure 11. ……………………………………………………………..…………...57
Chapter 2. Prediction of the excited state properties of [Ru(L1)2] and (MeCCCMe)Pt (CH3CN)
1. Introduction…………………………………………………………………..........59
2. Theoretical methods………………………………………………………………61
2.1 Franck-Condon factors…………..…………………………………………...61
2.2 Predict absorption and emission spectrum calculations……………………61
3. Result and Discussions……………………………………………………………63
3.1 Molecular Structures..………………………………………………………...63
3.1.1 [Ru(L1)2] singlet state ………………...………………………………....63
3.1.2 [Ru(L1)2] triplet state………………………..………………………......63
3.1.3 (MeCCCMe)Pt(CH3CN) singlet state……………..….…………..…........64
3.1.4 (MeCCCMe)Pt(CH3CN) triplet state…………………..……………........64
3.2 Molecular orbitals..……………………………………………………….…...64
3.2.1[Ru(L1)2]…………………………….........................................................64
3.2.2 (MeCCCMe)Pt(CH3CN) ……………...……..…………………………....65
3.3 Spectroscopy properties ..………………………...……………………...…...66
3.3.1[Ru(L1)2]………………………………….................................................66
3.3.2 (MeCCCMe)Pt(CH3CN) …………………………….…………………....66
4. Conclusion…………………………………………………………………………67
Reference……………………………………………………..………………………..69
Table 1. …………………………………………………………………………….73
Table 2. …………………………………………………………………………….74
Table 3. …………………………………………………………………………….75
Table 4. …………………………………………………………………………….77
Table 5. …………………………………………………………………………….78
Table 6. …………………………………………………………………………….79
Figure 1. …………………………………………………………………………...80
Figure 2. …………………………………………………………………………...82
Figure 3. …………………………………………………………………………...83
Figure 4. …………………………………………………………………………...84
Figure 5. …………………………………………………………………………...85
Figure 6. …………………………………………………………………………...86
Figure 7. …………………………………………………………………………...87
Figure 8. …………………………………………………………………………...88
Figure 9. …………………………………………………………………………...89
Figure 10. ……………………………………………………………..…………...90
Figure 11. ……………………………………………………………..…………...91
Figure 12. ……………………………………………………………..…………...92
Figure 13. ……………………………………………………………..…………...93
Figure 14. ……………………………………………………………..…………...94
Figure 15. ……………………………………………………………..…………...95
Figure 16. ……………………………………………………………..…………...96
Figure 17. ……………………………………………………………..…………...97
Figure 18. ……………………………………………………………..…………...98
Figure 19. ……………………………………………………………..…………...99
Figure 20. ……………………………………………………………..………….100
Figure 21. ……………………………………………………………..………….101
Figure 22. ……………………………………………………………..………….102
Figure 23. ……………………………………………………………..………….103
Figure 24. ……………………………………………………………..………….104
Figure 25. ……………………………………………………………..………….105
Figure 26. ……………………………………………………………..………….106
Figure 27. ……………………………………………………………..………….107
Figure 28. ……………………………………………………………..………….108
Figure 29. ……………………………………………………………..………….109

1. Taniguchi, T.; Tanaka, J.; Mishima, O.; Ohsawa, T.; Yamaoka, S. High Pressure Synthesis of Semiconducting Be‐doped Polycrystalline Cubic Boron Nitride and its Electrical Properties. Apply. Phys. Lett. 1993, 62, 576-578.
2. Albert, B.; Schmitt, K. CaB2C2:  Reinvestigation of a Semiconducting Boride Carbide with a Layered Structure and an Interesting Boron/Carbon Ordering Scheme. Inorg. Chem. 1999, 38, 6159-6163.
3. Brown, H. C.; Blue, C. D.; Nelson, D. J.; Bhat, N. G. Vinylic Organoboranes. 12. Synthesis of (Z)-1-Halo-1-Alkenes via Hydroboration of 1-Halo-1-Alkynes Followed by Protonolysis. J. Org. Chem. 1989, 54, 6064-6067.
4. Ueda, M.; Saitoh, A; Miyaura, N. Asymmetric Hydrogenation of 1-Phenylethenylboronic Acid and Esters for the Synthesis of Chiral Organoboron Compounds. J. Organomet. Chem. 2002, 642, 145-147.
5. Ollivier, C.; Renaud, P. Organoboranes as a Source of Radicals. Chem. Rev. 2001, 101, 3415-3434.
6. Politzer, P.; Lane, P.; Concha, M. C. Computational Determination of the Energetics of Boron Ignition/Combustion Reactions. J. Phys. Chem. A. 1999, 103, 1419-1425.
7. Chen, X.; Schauder, S.; Potier, N.; Dorsselear, A. V.; Pelezer, I.; Bassler, B. L.; Hughson, F. M. Structural Identification of a Bacterial Quorum-Sensing Signal Containing Boron. Nature. 2002, 415, 545-549.
8. Howk, J. C.; Sembach, K. R.; Savage, B. D. The Abundance of Interstellar Boron. Astrophys. J. 2000, 543, 278-283.
9. Brown, R. C.; Kolb, C. E.; Yetter, R. A.; Dryer,F. L.; Rabitz, H. Kinetic Modeling and Sensitivity Analysis for B/H/O/C/F Combination Systems. Combust. Flame. 1995, 101, 221-238.
10. Wu, R. Q.; Yang, M.; Feng, Y. P.; Ouyang, Y. F. Effect of Atomic Hydrogen on Boron-Doped Germanium: An Ab Initio Study. Appl. Phys. Lett. 2008, 93, 082107
11. Becke, A. D. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. Density‐Functional Thermochemistry. I. The Effect of the Exchange‐Only Gradient Correction. Density‐Functional Thermochemistry. II. The Effect of the Perdew–Wang Generalized‐Gradient Correlation Correction. J. Chem. Phys. 1993, 98, 5648-5652; 1992, 96, 2155-2160; 1992, 97, 9173-9177.
12. Balucami, N.; Zhang, F and Kaiser, R. I. Elementary Reactions of Boron Atoms with Hydrocarbons—Toward the Formation of Organo-Boron Compounds. Chem. Rev. 2010, 110, 5107-5127.
13. Balucami, N.; Asvany, O.; Lee, Y. T.; Kaiser, R. I.; Galland, N. and Hannachi, Y. J. Observation of Borirene from Crossed Beam Reaction of Boron Atoms with Ethylene. Am. Chem. Phys. Soc. 2000, 122, 11234-11235.
14. Zhang, F.; Gu, X.; Kaiser, R. I.; Balucami, N.; Huang, C. H.; Kao, C. H. and Chang, A. H. H. A Crossed Beam and Ab Initio Study of the Reaction of Atomic Boron with Ethylene. J. Phys. Chem. A. 2008, 112, 3837-3845.
15. Zhang, F.; Sun, H. L.; Chang, A. H. H.; Gu, X. and Kaiser, R. I. Crossed Molecular Beam Study on the Reaction of Boron Atoms, B(2Pj), with Allene, H2CCCH2(X1A1). J. Phys. Chem. A. 2007, 111, 13305-13310.
16. Sillars, D.; Kaiser, R. I.; Galland, N.; Hannachi, Y. Crossed-Beam Reaction of Boron Atoms, B(2Pj), with Dimethylacetylene, CH3CCCH3 (X1A1g):  Untangling the Reaction Dynamics to Form the 1,2-Dimethylacetylene-3-bora-cyclopropane Molecule. J. Phys. Chem. A. 2003, 107, 5149-5156.
17. Zhang, F.; Gu, X. and Kaiser, R. I. A Crossed Molecular Beam Study on the Reaction of Boron Atoms, B(2Pj), with Benzene, C6H6(X1A1g), and D6-Benzene C6H6 (X1A1g). Chem. Phys. Lett. 2007, 440, 56-63.
18. Brown, P. H.; Bellaloui, N.; Wimmer, M. A.; Bassil, E. S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F. and Romheld, V. Boron in Plant Biology. Plant biol. 2002, 205-223.
19. Eisch, J. J.; Shafii, B. and Rheingold, A. L. Bora-Aromatic Systems. 9. Di-.pi.-methane-like Photorearrangement of Dimesityl(mesitylethynyl)borane: Synthesis, Structure, and Aromaticity of Trimesitylborirene. J. Am. Chem. 1987, 109, 2526-2528.
20. Kaiser, R. I. Experimental Investigation on the Formation of Carbon-Bearing Molecules in the Interstellar Medium via Neutral−Neutral Reactions. Chem. Rev. 2002, 102, 1309-1358.
21. Casavecchia, P. Chemical Reaction Dynamics with Molecular Beams. Rep. Prog. Phys. 2000, 63, 355-414.

1. Abrahamsson, M.; Becker, H. C.; Hammarstrom, L.; Bonnefous, C.; Chamchoumis, C.; Thummel, R. P. Six-Membered Ring Chelate Complexes of Ru(II):  Structural and Photophysical Effects. Inorg. Chem. 2007, 46, 10354-10364.
2. Robson, K. C. D.; Koivisto, B. D.; Yella, A.; Sporinova, B.; Nazeeruddin, M. K.; Baumgartner, T.; Gratzel, M. and Berlinguette, C. P. Design and Development of Functionalized Cyclometalated Ruthenium Chromophores for Light-Harvesting Applications. Inorg. Chem. 2011, 50, 5494-5508
3. Koivisto, B. D.; Robson, K. C. D. and Berlinguette, C. P. Systematic Manipulation of the Light-Harvesting Properties for Tridentate Cyclometalated Ruthenium(II) Complexes. Inorg. Chem. 2009, 48, 9644-9652.
4. Mydlak, M.; Mauro, M.; Polo, F.; Felicetti, M.; Leonhardt, J.; Diener, G.; Cola, L. D. and Strasser, C. A. Controlling Aggregation in Highly Emissive Pt(II) Complexes Bearing Tridentate Dianionic NNN Ligands. Synthesis, Photophysics, and Electroluminescence. Chem. Mater. 2011, 23, 3659-3667.
5. Chi, Y. and Chou, P. T. Transition-Metal Phosphors with Cyclometalating Ligands: Fundamentals and Applications. Chem. Soc. Rev. 2010, 39, 638-655.
6. Mercsa, L. and Albrecht, M. Beyond Catalysis: N-Heterocyclic Carbene Complexes as Components for Medicinal, Luminescent, and Functional Materials Applications. Chem. Soc. Rev. 2010, 39, 1903-1912.
7. Unger, Y.; Zeller, A.; Ahrens, S. and Strassner, T. Blue Phosphorescent Emitters: New N-Heterocyclic Platinum(II) Tetracarbene Complexes. Chem. Commun. 2008, 3263-3265
8. Unger, Y.; Meyer, D. and Strassner, T. Blue Phosphorescent Platinum(II) Tetracarbene Complexes with Bis(triazoline-5-ylidene) Ligands. Dalton Trans. 2010, 39, 4295-4301.
9. Son, S. U.; Park, K. H.; Lee, Y. S.; Kim, B. Y.; Choi, C. H.; Lah, M. S.; Jang, Y. H.; Jang, D. J. and Chung, Y. K. Synthesis of Ru(II) Complexes of N-Heterocyclic Carbenes and Their Promising Photoluminescence Properties in Water. Inorg. Chem. 2004, 43, 6896-6898.
10. Abrahamsson, M.; Jager, M.; Osterman, T.; Eriksson, L.; Persson, P.; Becker, H. C; Johansson, O. and Hammarstrom, L. A 3.0 μs Room Temperature Excited State Lifetime of a Bistridentate RuII−Polypyridine Complex for Rod-like Molecular Arrays. J. Am. Chem. Soc. 2006, 128, 12616-12617.
11. Wang, J.; Fang, Y. O.; Hanan, G. S.; Loiseau, F. and Campagna, S. Synthesis and Properties of the Elusive Ruthenium(II) Complexes of 4‘-Cyano-2,2‘:6‘,2‘ ‘-terpyridine. Inorg. Chem. 2004, 44, 5-7.
12. Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C. and Thompson, A. M. W. C. Complexes of the Ruthenium(II)-2,2':6',2''-terpyridine Family. Effect of Electron-Accepting and -Donating Substituents on the Photophysical and Electrochemical Properties. Inorg. Chem. 1995, 34, 2759-2767.
13. Duati, M.; Tasca, S.; Lynch, F. C.; Bohlen, H. and Vos, J. S. Enhancement of Luminescence Lifetimes of Mononuclear Ruthenium(II)−Terpyridine Complexes by Manipulation of the σ-Donor Strength of Ligands. Inorg. Chem. 2003, 42, 8377-8384.
14. Beley, M.; Collin, J. P.; Louis, R.; Metz, B. and Sauvage, J. P. 3,3',5,5'-Tetrapyridylbiphenyl, a Bis-Cyclometalating Bridging Ligand with a High Coupling Ability in Ruthenium(III), Ruthenium(II) Mixed Valence Systems. J. Am. Soc. 1991, 113, 8521-8522.
15. Chianese, A. R.; Mo, A.; Lampland, N. L.; Swartz, R. L. and Bremer, P. T. Iridium Complexes of CCC-Pincer N-Heterocyclic Carbene Ligands: Synthesis and Catalytic C−H Functionalization. Organometallics, 2010, 29, 3019-3026.
16. Wei, W.; Qin, Y.; Luo, M.; Xia, P. and Wong, M. S. Synthesis, Structure, and Catalytic Activity of Palladium(II) Complexes of New CNC Pincer-Type N-Heterocyclic Carbene Ligands. Organometallics. 2008, 27, 2268-2272.
17. Lee, C. S.; Sabiah, S.; Wang, J. C.; Hwang, W. S. and Lin, I. J. B. Water-Induced Changes of Photoluminescence of a Pincer-Type N-Heterocyclic Carbene Platinum(II) Complex. Organometallics. 2010, 29, 286-289.
18. Gu, S. and Chen, W. Pincer Complexes of Palladium- and Nickel-Containing 3-Butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene as Efficient Aqueous Sonogashira and Kumada Coupling Reactions. Organometallics. 2009, 28, 909-914.
19. Boronat, M.; Corma, A.; González-Arellano, C.; Iglesias, M. and Sánchez, F. Synthesis of Electron-Rich CNN-Pincer Complexes, with N-Heterocyclic Carbene and (S)-Proline Moieties and Application to Asymmetric Hydrogenation. Organometallics. 2009, 29, 134-141.
20. Gischig, S. and Togni, A. Synthesis and Coordination Chemistry of a New Chiral Tridentate PCP N-Heterocyclic Carbene Ligand Based on a Ferrocene Backbone. Organometallics. 2004, 23, 2479-2487.
21. Steinke, T.; Shaw, B. K.; Jong, H.; Patrick, B. O. and Fryzuk, M. D. Synthesis and Coordination Chemistry of a Tridentate o-Phenylene-Bridged Diphosphine−NHC System. Organometallics. 2009, 28, 2830-2836.
22. Lee, H. M.; Zeng, J. Y.; Hu, C. H. and Lee, M. T. A New Tridentate Pincer Phosphine/N-Heterocyclic Carbene Ligand:  Palladium Complexes, Their Structures, and Catalytic Activities. Inorg Chem. 2004, 43, 6822-6829.
23. Moser, M.; Wucher, B.; Kunz, D. and Rominger, F. 1,8-Bis(imidazolin-2-yliden-1-yl)carbazolide (bimca):  A New CNC Pincer-Type Ligand with Strong Electron-Donating Properties. Facile Oxidative Addition of Methyl Iodide to Rh(bimca)(CO). Organometallics. 2007, 26, 1024-1030.
24. Romain, C.; Brelot, L.; Bellemin-Laponnaz, S. and Dagorne, S. Synthesis and Structural Characterization of a Novel Family of Titanium Complexes Bearing a Tridentate Bis-phenolate-N-heterocyclic Carbene Dianionic Ligand and Their Use in the Controlled ROP of rac-Lactide. Organometallics. 2010, 29, 1191-1198.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊