跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/01 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳榮傑
研究生(外文):Rong-Jie Chen
論文名稱:阿茲海默症之乙型類澱粉寡聚體逆轉正常普立昂蛋白誘發下減少的Tau蛋白
論文名稱(外文):Alzheimer's Amyloid-β Oligomers Reverse Cellular Prion Protein Induced Tau Reduction
指導教授:陳韻如 博士
指導教授(外文):Yun-Ru Chen, Ph.D.
口試委員:廖永豐 博士杜邦憲 博士楊定一 博士鄭菡若 博士
口試委員(外文):Yung-Feng Liao, Ph.D.Pang-Hsien Tu, M.D., Ph.D.Ding-I Yang, Ph.D.Han-Juo Cheng, Ph.D
口試日期:2013-12-02
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:56
中文關鍵詞:普立昂乙型類澱粉寡聚體阿茲海默症
外文關鍵詞:PrP(C)tauamyloid-βoligomersFynAlzheimer’s disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:614
  • 評分評分:
  • 下載下載:100
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症(Alzheimer’s disease, AD)為失憶症的一種,是現今老年失智症中為數最多的一類,在過去分子醫學的研究中, 腦部神經細胞外乙型類澱粉蛋白的堆積與腦部神經細胞內tau 蛋白不正常的纖維化,被認為是阿茲海默症兩個重要的指標。而過往的研究,也多著重在以此兩個蛋白為中心的探討,在預防的構想上,多是如何阻止其不正常堆疊或是加速其分解而延伸出的議題。近年來發現,腦部中乙型類澱粉蛋白寡聚體似乎才是關鍵,是腦部神經細胞毒性的來源,而非病人腦部常見的乙型類澱粉蛋白斑塊,這讓研究人員想得知,乙型類澱粉寡聚體是如何對神經細胞產生影響。在這幾年的研究當中,發現有些分子可能在細胞表面作為乙型類澱粉寡聚體的蛋白受器,並藉此影響神經細胞電訊號的傳遞,進而影響其正常功能,如學習記憶等,普立昂蛋白便為其中重要的一員。普立昂蛋白為一有功能的正常蛋白,其不正常摺疊可導致狂牛症,在2009 年自然期刊發表中,經由研究者大規模篩選後,發現與乙型類澱粉寡聚體有最高親和力的蛋白就是野生型的普立昂蛋白。因此,研究乙型類澱粉寡聚體透過普立昂蛋白所引發的下游訊息傳遞路徑,可讓我們對阿茲海默症的致病機制有更深入的了解。
我們發現在人類神經母細胞瘤細胞株高度表達野生型普立昂蛋白會降低tau 蛋白的表現,而乙型類澱粉寡聚體會減緩此一現象,讓tau 蛋白表現回復,此一現象不但延續2009 年自然期刊的發現,乙型類澱粉寡聚體會接合到普立昂蛋白,更進一步連結到阿茲海默症另一重要的指標,tau 蛋白。然而,若是高度表現在阿茲海默病人中比例較高之普立昂點突變M128V 型蛋白時,則tau 蛋白表現下降的情形,便不受乙型類澱粉寡聚體調控。另一方面,若是表現去除普利昂蛋白上乙型類澱粉寡聚體的相互作用序列胺基酸95-110 之缺陷型蛋白,則tau 蛋白的表現也不受調控。我們發現對於tau 蛋白調控是源自於轉錄其mRNA (MAPT)表現接著深入研究其中間傳遞的機制,我們發現Fyn 磷酸激酶的磷酸化與MEK 磷酸激酶在這中間扮演訊息傳遞的重要角色。整體而言,我們研究發現乙型類澱粉寡聚體接合到細胞表面普立昂蛋白後的下游機制,而了解乙型類澱粉寡聚體-普立昂蛋白-MAPT-tau 的訊息傳導路徑與Fyn、MEK 磷酸化相關。
Extracellular senile plaques composing mainly of amyloid-β (Aβ) and intracellular neurofibrillary tangles comprising misfolded and hyper-phosphorylated tau protein are pathologic hallmarks in Alzheimer’s disease (AD). Aβ aggregates are considered the toxic entities in AD in which soluble Aβ oligomers (AβOs) are shown more toxic than other Aβ species. Cellular prion protein (PrPC) is an emerging receptor that has highest binding affinity with Aβ oligomers while the relationship between PrPC and AD remains to be clarified. To inspect the downstream signal transduction pathway under the interaction of AβOs and PrPC, we examined the tau protein level by using murine PrPC-over-expressing human neuroblastoma BE(2)-C cells and the influences under Aβ42 oligomer treatment. Interestingly, down-regulation of total tau protein level was observed in PrPC-over-expressing neuroblastoma while Aβ42 oligomer treatment mitigated the PrPC WT-induced tau reduction but not PrPC M128V, the high population PrPC polymorphic allele in AD patient. The rescue effect of PrPC-induced tau reduction by Aβ42 oligomer treatment was diminished in PrPC mutant lacking the major Aβ oligomer binding site, amino acids 95-110. Quantitative PCR manifested that the tau reduction under PrPC over-expression was ascribed to transcriptional regulation. Fyn kinase and MEK inhibition by PP2 and U0126 respectively could ameliorate the PrPC-induced tau reduction, and Aβ42 oligomer treatment modulated Fyn kinase phosphorylation. These evidences revealed that Fyn signal transduction is involved in AβOs-PrPC-MAPT-tau pathway. In conclusion, we illustrated the relationship that PrPC down-regulated tau associated with Fyn pathway and AβOs can alleviate this effect. Our study facilitated the essential knowledge for the relationship of three important molecules in AD, Aβ oligomers, PrPC and tau.
Table of Contents............................................................................................................… I
List of Figures.................................................................................................................... V
Abbreviations .................................................................................................................. VII
摘要 .................................................................................................................................. IX
Abstract ............................................................................................................................ X

1. Introduction and Rationale............................................................................................. 1
1.1 Alzheimer’s disease (AD).............................................................................................. 1
1.2 Amyloid-beta (Aβ) ....................................................................................................... 2
1.3 Tau is one microtubule-associated protein (MAPT)....................................................... 4
1.4 PrPC which means the normal cellular prion protein..................................................... 5
1.5 Aβ oligomers with cellular PrPC may play a role in AD ................................................. 6
1.6 Controversial issue ...................................................................................................... 7
1.7 Rationale ..................................................................................................................... 8

2. Materials and Methods................................................................................................... 9
2.1 Aβ42 Oligomer Preparation........................................................................................... 9
2.2 Transmission Electron Microscopy (TEM) .................................................................... 10
2.3 Constructs ................................................................................................................. 10
2.4 Cellular Binding Assays of Aβ42 Oligomers ................................................................ 10
2.5 Human Neuroblastoma Cell Culture and Transfection.................................................. 12
2.6 Cell Lysis, Western Blotting Aanalysis and Image Quantification .................................. 12
2.7 Quantitative Real-time PCR (qPCR) and Data Analysis................................................... 13
2.8 Cell Viability MTT Assay .............................................................................................. 14
2.9 Cell Viability Trypan Blue Exclusion Assay.................................................................... 15
2.10 Fyn Pathway Inhibitor Treatments ............................................................................. 15
2.11 Immunoprecipitation (IP) .......................................................................................... 16
2.12 Proteasome Inhibitor Treatments.............................................................................. 16
2.13 Knockdown Assay by Short Hairpin RNAs (shRNAs)................................................... 16
2.14 Statistical Analysis.................................................................................................... 17

3. Results ......................................................................................................................................................................................................................... 18
3.1 Aβ42 Oligomer Treatment Mitigated The Cellular Tau Reduction Induced by PrPC Expression but not PrPC M128V. ................................................... 18
3.1.1 Aβ oligomer preparation for PrPC ............................................................................................................................................................................ 18
3.1.2 Tau expression and modification in PrPC over-expressing cells under Aβ42 oligomer treatment ............................................................................. 19
3.1.3 Tau expression in prion Δ95-110 over-expressing cells under Aβ42 oligomer treatment ........................................................................................ 20
3.2 The PrPC-Induced Tau Reduction Was Ascribed to Tau mRNA Downregulation and the Tau mRNA Can Be Regressed by Aβ42 Oligomer Treatment .... 21
3.2.1 Tau mRNA, MAPT expression in PrPC over-expressing cells under Aβ42 oligomer treatment .................................................................................. 21
3.2.2 Proteasome activity in PrPC over-expressing cells under Aβ42 oligomer treatment .................................................................................................. 21
3.3 Fyn Pathway Inhibition Relieved PrPC-Induced Tau Reduction. .................................................................................................................................... 22
3.3.1 Tau, Fyn and p-SFK expression in PrPC over-expressing cells with Src kinase, MEK1/2 inhibitors ............................................................................ 22
3.4 Aβ42 Oligomer Treatment Modulated Fyn Kinase Phosphorylation. ............................................................................................................................. 23
3.4.1 Fyn and p-SFK expression in PrPC over-expressing cells with Aβ42 oligomer treatment .......................................................................................... 23

4. Discussion ..................................................................................................................... 24
4.1 The toxic entities of Aβ oligomers with PrPC ................................................................ 24
4.2 The M129V polymorphism of PrPC ............................................................................... 24
4.3 The 95-110 fragment of PrPC....................................................................................... 25
4.4 The lose-of-function of PrPC in AD............................................................................... 25
4.5 The transcriptional regulation of PrPC .......................................................................... 26
4.6 PrPC and Fyn................................................................................................................. 26
4.7 Fyn and MEK inhibition under PrPC over-expression..................................................... 27
4.8 Fyn phosphorylation under Aβ oligomers ..................................................................... 27
4.9 Fyn degradation under proteasome inhibitor................................................................. 28
4.10 Transcription factors between Fyn and MAPT ............................................................. 28
4.11 Many faces of bi-function tau .................................................................................... 29
4.12 The signal transduction pathway ................................................................................ 30

References ......................................................................................................................... 31
Figures .............................................................................................................................. 40
Appendix ........................................................................................................................... 52
1.Alier, K., et al., Abeta inhibition of ionic conductance in mouse basal forebrain neurons is dependent upon the cellular prion protein PrPC. J Neurosci, 2011. 31(45): p. 16292-7.
2.Andreadis, A., et al., A tau promoter region without neuronal specificity. J Neurochem, 1996. 66(6): p. 2257-63.
3.Balducci, C., et al., Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A, 2010. 107(5): p. 2295-300.
4.Barry, A.E., et al., Alzheimer's disease brain-derived amyloid-beta-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci, 2011. 31(20): p. 7259-63.
5.Bate, C. and A. Williams, Amyloid-beta-induced synapse damage is mediated via cross-linkage of cellular prion proteins. J Biol Chem, 2011. 286(44): p. 37955-63.
6.Benilova, I. and B. De Strooper, Prion protein in Alzheimer's pathogenesis: a hot and controversial issue. EMBO Mol Med, 2010. 2(8): p. 289-90.
7.Benilova, I., E. Karran, and B. De Strooper, The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci, 2012. 15(3): p. 349-57.
8.Biasini, E., et al., Prion protein at the crossroads of physiology and disease. Trends Neurosci, 2012. 35(2): p. 92-103.
9.Bitan, G., et al., Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A, 2003. 100(1): p. 330-5.
10.Buee, L., et al., From tau phosphorylation to tau aggregation: what about neuronal death? Biochem Soc Trans, 2010. 38(4): p. 967-72.
11.Caetano, F.A., et al., Amyloid-beta oligomers increase the localization of prion protein at the cell surface. J Neurochem, 2011. 117(3): p. 538-553.
12.Calella, A.M., et al., Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med, 2010. 2(8): p. 306-14.
13.Carlo, A.S., Sortilin, a novel APOE receptor implicated in Alzheimer disease. Prion, 2013. 7(5): p. 378-382.
14.Caughey, B. and G.S. Baron, Prions and their partners in crime. Nature, 2006. 443(7113): p. 803-810.
15.Chen, R.J., et al., Alzheimer's amyloid-beta oligomers rescue cellular prion protein induced tau reduction via the Fyn pathway. ACS Chem Neurosci, 2013. 4(9): p. 1287-96.
16.Chen, S., S.P. Yadav, and W.K. Surewicz, Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role OF N-terminal residues. J Biol Chem, 2010. 285(34): p. 26377-83.
17.Chung, E., et al., Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an alzheimer's disease model mouse. BMC Neurosci, 2010. 11(1): p. 130.
18.Cisse, M. and L. Mucke, Alzheimer's disease: A prion protein connection. Nature, 2009. 457(7233): p. 1090-1.
19.Cisse, M., et al., Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J Neurosci, 2011. 31(29): p. 10427-31.
20.Corder, E.H., et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 1993. 261(5123): p. 921-3.
21.D'Addario, M., P.D. Arora, and C.A. McCulloch, Role of p38 in stress activation of Sp1. Gene, 2006. 379: p. 51-61.
22.Da Costa Dias, B., et al., Structural and mechanistic commonalities of amyloid-beta and the prion protein. Prion, 2011. 5(3): p. 126-37.
23.Dawson, H.N., et al., Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci, 2001. 114(Pt 6): p. 1179-87.
24.De Strooper, B., et al., Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature, 1998. 391(6665): p. 387-90.
25.Dermaut, B., et al., PRNP Val129 homozygosity increases risk for early-onset Alzheimer's disease. Ann Neurol, 2003. 53(3): p. 409-12.
26.Ferrer, I., et al., Prion protein expression in senile plaques in Alzheimer's disease. Acta Neuropathol, 2001. 101(1): p. 49-56.
27.Fluharty, B.R., et al., An N-terminal fragment of the prion protein binds to amyloid-beta oligomers and inhibits their neurotoxicity in vivo. J Biol Chem, 2013. 288(11): p. 7857-66.
28.Freir, D.B., et al., Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat Commun, 2011. 2: p. 336.
29.Gao, L., K.L. Tucker, and A. Andreadis, Transcriptional regulation of the mouse microtubule-associated protein tau. Biochim Biophys Acta, 2005. 1681(2-3): p. 175-81.
30.Giacobini, E. and G. Gold, Alzheimer disease therapy-moving from amyloid-beta to tau. Nat Rev Neurol, 2013. 9(12): p. 677-86.
31.Gimbel, D.A., et al., Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci, 2010. 30(18): p. 6367-74.
32.Goate, A., et al., Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991. 349(6311): p. 704-6.
33.Goedert, M. and M.G. Spillantini, A century of Alzheimer's disease. Science, 2006. 314(5800): p. 777-781.
34.Gomez de Barreda, E., et al., Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis, 2010. 37(3): p. 622-9.
35.Griffiths, H.H., I.J. Whitehouse, and N.M. Hooper, Regulation of amyloid-beta production by the prion protein. Prion, 2012. 6(3): p. 217-222.
36.Guillot-Sestier, M.V., et al., alpha-Secretase-derived Fragment of Cellular Prion, N1, Protects against Monomeric and Oligomeric Amyloid beta (Abeta)-associated Cell Death. J Biol Chem, 2012. 287(7): p. 5021-32.
37.Gunther, E.C. and S.M. Strittmatter, Beta-amyloid oligomers and cellular prion protein in Alzheimer's disease. J Mol Med (Berl), 2010. 88(4): p. 331-8.
38.Heicklen-Klein, A. and I. Ginzburg, Tau promoter confers neuronal specificity and binds Sp1 and AP-2. J Neurochem, 2000. 75(4): p. 1408-18.
39.Hussain, I., et al., Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci, 1999. 14(6): p. 419-27.
40.Hutton, M., et al., Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 1998. 393(6686): p. 702-5.
41.Hyeon, J.W., et al., The association between prion proteins and Abeta(1-42) oligomers in cytotoxicity and apoptosis. Biochem Biophys Res Commun, 2012. 424(2): p. 214-20.
42.Ikegami, S., A. Harada, and N. Hirokawa, Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neurosci Lett, 2000. 279(3): p. 129-32.
43.Ittner, L.M. and J. Gotz, Amyloid-beta and tau--a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci, 2011. 12(2): p. 65-72.
44.Ittner, L.M., et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell, 2010. 142(3): p. 387-97.
45.Ittner, L.M., et al., Dendritic Function of Tau Mediates Amyloid-beta Toxicity in Alzheimer's Disease Mouse Models. Cell, 2010. 142(3): p. 387-397.
46.Jayadev, S., et al., Familial prion disease with alzheimer disease-like tau pathology and clinical phenotype. Ann Neurol, 2011. 69(4): p. 712-20.
47.Kang, M., et al., Characterizing affinity epitopes between prion protein and beta-amyloid using an epitope mapping immunoassay. Exp Mol Med, 2013. 45: p. e34.
48.Kaspar, J.W. and A.K. Jaiswal, Tyrosine phosphorylation controls nuclear export of Fyn, allowing Nrf2 activation of cytoprotective gene expression. FASEB J, 2011. 25(3): p. 1076-87.
49.Kellett, K.A. and N.M. Hooper, Prion protein and Alzheimer disease. Prion, 2009. 3(4): p. 190-4.
50.Kessels, H.W., et al., The prion protein as a receptor for amyloid-beta. Nature, 2010. 466(7308): p. E3-4; discussion E4-5.
51.Kovacs, G.G. and H. Budka, Molecular pathology of human prion diseases. Int J Mol Sci, 2009. 10(3): p. 976-99.
52.Kudo, W., et al., Cellular prion protein is essential for oligomeric amyloid-beta-induced neuronal cell death. Hum Mol Genet, 2012. 21(5): p. 1138-44.
53.Lambert, M.P., et al., Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A, 1998. 95(11): p. 6448-53.
54.Larson, M., et al., The complex PrP(c)-Fyn couples human oligomeric Abeta with pathological tau changes in Alzheimer's disease. J Neurosci, 2012. 32(47): p. 16857-71a.
55.Lauren, J., et al., Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 2009. 457(7233): p. 1128-32.
56.Lesne, S., et al., A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 2006. 440(7082): p. 352-7.
57.Lin, X., et al., Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1456-60.
58.Mahley, R.W., K.H. Weisgraber, and Y. Huang, Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci U S A, 2006. 103(15): p. 5644-51.
59.McLean, C.A., et al., Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol, 1999. 46(6): p. 860-6.
60.Morris, M., et al., Age-appropriate cognition and subtle dopamine-independent motor deficits in aged Tau knockout mice. Neurobiol Aging, 2013. 34(6): p. 1523-9.
61.Morris, M., et al., The many faces of tau. Neuron, 2011. 70(3): p. 410-26.
62.Nah, J., et al., BECN1/Beclin1 is recruited into lipid rafts by prion to activate autophagy in response to amyloid beta 42. Autophagy, 2013. 9(12).
63.Nicoll, A.J., et al., Amyloid-beta nanotubes are associated with prion protein-dependent synaptotoxicity. Nat Commun, 2013. 4: p. 2416.
64.Nieznanski, K., et al., Soluble Prion Protein Inhibits Amyloid beta (Abeta) Fibrillization and Toxicity. J Biol Chem, 2012. 287(40): p. 33104-33108.
65.Ordonez-Gutierrez, L., et al., Cellular prion protein modulates beta-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging, 2013. 34(12): p. 2793-804.
66.Ostapchenko, V.G., et al., The prion protein ligand, stress-inducible phosphoprotein 1, regulates amyloid-beta oligomer toxicity. J Neurosci, 2013. 33(42): p. 16552-64.
67.Pantera, B., et al., PrPc activation induces neurite outgrowth and differentiation in PC12 cells: role for caveolin-1 in the signal transduction pathway. J Neurochem, 2009. 110(1): p. 194-207.
68.Reiniger, L., et al., Tau, prions and Abeta: the triad of neurodegeneration. Acta Neuropathol, 2010.
69.Resenberger, U.K., et al., The cellular prion protein mediates neurotoxic signalling of beta-sheet-rich conformers independent of prion replication. EMBO J, 2011. 30(10): p. 2057-70.
70.Resenberger, U.K., K.F. Winklhofer, and J. Tatzelt, Cellular prion protein mediates toxic signaling of amyloid beta. Neurodegener Dis, 2012. 10(1-4): p. 298-300.
71.Rial, D., et al., Overexpression of cellular prion protein (PrP(C)) prevents cognitive dysfunction and apoptotic neuronal cell death induced by amyloid-beta (Abeta(1-40)) administration in mice. Neuroscience, 2012. 215: p. 79-89.
72.Riemenschneider, M., et al., Prion protein codon 129 polymorphism and risk of Alzheimer disease. Neurology, 2004. 63(2): p. 364-6.
73.Roberson, E.D., et al., Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science, 2007. 316(5825): p. 750-4.
74.Rushworth, J.V., et al., Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem, 2013. 288(13): p. 8935-51.
75.Rushworth, J.V. and N.M. Hooper, Lipid Rafts: Linking Alzheimer's Amyloid-beta Production, Aggregation, and Toxicity at Neuronal Membranes. Int J Alzheimers Dis, 2010. 2011: p. 603052.
76.Sadot, E., et al., Identification of a tau promoter region mediating tissue-specific-regulated expression in PC12 cells. J Mol Biol, 1996. 256(5): p. 805-12.
77.Saijo, E., S.W. Scheff, and G.C. Telling, Unaltered prion protein expression in Alzheimer disease patients. Prion, 2011. 5(2): p. 109-16.
78.Santuccione, A., et al., Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol, 2005. 169(2): p. 341-54.
79.Scheuner, D., et al., Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med, 1996. 2(8): p. 864-70.
80.Schmitz, M., et al., Impact of the Cellular Prion Protein on Amyloid-beta and 3PO-Tau Processing. J Alzheimers Dis, 2014. 38(3): p. 551-65.
81.Selkoe, D.J., Resolving controversies on the path to Alzheimer's therapeutics. Nat Med, 2011. 17(9): p. 1060-5.
82.Sennvik, K., et al., Tau-4R suppresses proliferation and promotes neuronal differentiation in the hippocampus of tau knockin/knockout mice. FASEB J, 2007. 21(9): p. 2149-61.
83.Shankar, G.M., et al., Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med, 2008. 14(8): p. 837-42.
84.Sherrington, R., et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 1995. 375(6534): p. 754-60.
85.Sinha, S., et al., Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 1999. 402(6761): p. 537-40.
86.Spillantini, M.G. and M. Goedert, Tau pathology and neurodegeneration. Lancet Neurology, 2013. 12(6): p. 609-622.
87.Strittmatter, W.J., et al., Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A, 1993. 90(5): p. 1977-81.
88.Strom, A., et al., Cellular prion protein localizes to the nucleus of endocrine and neuronal cells and interacts with structural chromatin components. Eur J Cell Biol, 2011. 90(5): p. 414-9.
89.Takahashi, R.H., et al., Accumulation of cellular prion protein within dystrophic neurites of amyloid plaques in the Alzheimer's disease brain. Neuropathology, 2011. 31(3): p. 208-14.
90.Um, J.W., et al., Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron, 2013. 79(5): p. 887-902.
91.Um, J.W., et al., Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci, 2012. 15(9): p. 1227-1235.
92.Um, J.W. and S.M. Strittmatter, Amyloid-beta induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion, 2013. 7(1): p. 37-41.
93.Vossel, K.A., et al., Tau reduction prevents Abeta-induced defects in axonal transport. Science, 2010. 330(6001): p. 198.
94.Walsh, D.M., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002. 416(6880): p. 535-9.
95.Wang, H., et al., Overcoming barriers and thresholds - signaling of oligomeric Abeta through the prion protein to Fyn. Mol Neurodegener, 2013. 8: p. 24.
96.Wang, H.W., et al., Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res, 2002. 924(2): p. 133-40.
97.Wang, H.Y., et al., beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem, 2000. 275(8): p. 5626-32.
98.Wang, Q., et al., Beta-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. Eur J Neurosci, 2005. 22(11): p. 2827-32.
99.Westergard, L., H.M. Christensen, and D.A. Harris, The cellular prion protein (PrPC): Its physiological function and role in disease. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2007. 1772(6): p. 629-644.
100.Whitehouse, I.J., et al., Prion Protein is Reduced in Aging and in Sporadic but not in Familial Alzheimer's Disease. J Alzheimers Dis, 2010. 22(3): p. 1023-1031.
101.Whitehouse, I.J., et al., Prion protein is decreased in Alzheimer's brain and inversely correlates with BACE1 activity, amyloid-beta levels and Braak stage. PLoS One, 2013. 8(4): p. e59554.
102.Williamson, R., et al., Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J, 2008. 22(5): p. 1552-9.
103.Wimo, A. and M. Prince, World Alzheimer Report 2010: The Global Economic Impact of Dementia. Alzheimer's Disease International, 2010.
104.Wisniewski, T. and A. Boutajangout, Vaccination as a therapeutic approach to Alzheimer's disease. Mt Sinai J Med, 2010. 77(1): p. 17-31.
105.Xu, K. and H.K. Shu, EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res, 2007. 67(13): p. 6121-9.
106.Yan, R., et al., Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature, 1999. 402(6761): p. 533-7.
107.Yan, S.D., et al., RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature, 1996. 382(6593): p. 685-91.
108.Yang, K., et al., Fyn, a potential target for Alzheimer's disease. J Alzheimers Dis, 2011. 27(2): p. 243-52.
109.Yang, S.H., A.D. Sharrocks, and A.J. Whitmarsh, MAP kinase signalling cascades and transcriptional regulation. Gene, 2013. 513(1): p. 1-13.
110.You, H., et al., Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1737-42.
111.Younan, N.D., et al., The cellular prion protein traps Alzheimer's Abeta in an oligomeric form and disassembles amyloid fibers. FASEB J, 2013. 27(5): p. 1847-58.
112.Zhao, W.Q., et al., MAP kinase signaling cascade dysfunction specific to Alzheimer's disease in fibroblasts. Neurobiol Dis, 2002. 11(1): p. 166-83.
113.Zou, W.Q., et al., Amyloid-{beta}42 Interacts Mainly with Insoluble Prion Protein in the Alzheimer Brain. J Biol Chem, 2011. 286(17): p. 15095-105.
114.Zou, W.Q., et al., Insoluble cellular prion protein and its association with prion and Alzheimer diseases. Prion, 2011. 5(3): p. 172-178.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top