(3.237.20.246) 您好!臺灣時間:2021/04/15 13:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳威男
研究生(外文):Chen, Wei-Nan
論文名稱:探討第三型酸敏性離子通道、瞬態感受器電位陽離子通道、物質P在急性肌肉疼痛轉變為慢性肌肉疼痛過程中的角色
論文名稱(外文):Roles of ASIC3, TRPV1, and Substance P in the Transition From Acute to Chronic Widespread Muscle Pain
指導教授:陳志成陳志成引用關係
指導教授(外文):Chen, Chih-Cheng
口試委員:陳志成徐百川陳建璋嚴震東孫維欣
口試委員(外文):Chen, Chih-ChengShyu, Bai ChuangChen, Chien-ChangYen, Chen-TungSun, Wei-Hsin
口試日期:2014-05-22
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:73
中文關鍵詞:第三型酸敏性離子通道瞬態感受器電位陽離子通道物質P慢性肌肉疼痛
外文關鍵詞:ASIC3TRPV1Substance PChronic Widespread Muscle Pain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
許多研究證據顯示第三型酸敏性離子通道(acid-sensing ion channel 3, ASIC3) 和瞬態感受器電位陽離子通道(transient receptor potential vanilloid 1, TRPV1)可能參與慢性疼痛的發生,但是對於ASIC3和TRPV1在慢性疼痛中的作用機制仍不清楚。因此我採用Sluka實驗室研發的非發炎性肌肉疼痛小鼠模式,探討ASIC3和TRPV1在慢性疼痛中扮演的作用角色。在野生型小鼠單側腓腸肌注射pH 4.0生理食鹽水會誘發雙側腳掌短期機械性痛覺過敏化;五天內在同側腓腸肌注射pH 4.0生理食鹽水會誘發持久性痛覺過敏化。由此推論,初次的酸性食鹽水注射可能會誘發肌肉痛覺感受器(nociceptors)產生痛覺過敏化促發作用(hyperalgesic priming)。因此,小鼠接受第二次酸性食鹽水注射後,得以產生持久性的慢性肌肉痛覺過敏化。我設計了ㄧ系列的藥理實驗來驗證ASIC3和TRPV1的活化,是否會影響到肌肉痛覺感受器促發作用的產生。我發現活化ASIC3不僅會增強河豚毒素敏感型電壓門控鈉離子電流(TTXs INaV) ,同時也會影響促發作用的持續時間(duration of priming)。相對而言,活化ASIC3或TRPV1均可增加河豚毒素不敏感型電壓門控鈉離子電流(TTXr INaV) ,並與促發作用的建立(establishment of priming)相關。另外,我也發現電壓門控鈉離子通道Nav1.8跟慢性痛覺過敏化維持相關。因為痛覺感受器遭受刺激所釋放的神經胜肽物質P (substance P, SP)會調控中樞神經系統痛覺傳遞並造成周邊神經系統產生神經性炎症反應(neurogenic inflammation),所以我想進一步探討SP在酸誘發之慢性肌肉疼痛扮演何種角色。令人訝異的是,我發現SP在肌肉的作用截然不同於以往的認知。肌肉酸性注射造成痛覺感受器釋放SP, SP具有鎮痛作用(antinociceptive effect)可以抑制酸誘發之痛覺過敏化。


Increasing evidences suggest that both acid-sensing ion channel 3 (ASIC3) and transient receptor potential vanilloid 1 (TRPV1) are involved in the process of chronic muscle pain, but their precise role in chronic muscle pain remained elusive. A rodent model of non-inflammatory muscle pain was established by Sluka and colleagues. In the pain model, an acid-injection into one side of the gastrocnemius muscle caused a transient mechanical hyperalgesia on both hind paws and the hyepralgesia declined in 24 hours; the bilateral secondary mechanical hyperalgesia became long lasting after a second acid injection within five days in wild type mice. Here, I found the first acid-injection also induced the hyperalgesic priming of muscle nociceptors to trigger the development of long-lasting chronic hyperalgesia induced by second acid-injection. The activation of ASIC3 or TRPV1 is critical for the hyperalgesic priming of muscle nociceptors. Activation of ASIC3 was required for enhanced activity of tetrodotoxin (TTX)-sensitive voltage-gated sodium channels and the duration of priming that determines how long the primed state can stay. However, enhanced activity of TTX-resistant voltage-gated sodium channels with ASIC3 or TRPV1 activation was required for the establishment of priming that determines how long the long-lasting hyperalgesia can be maintained. Moreover, I found Nav1.8 is involved in the maintenance of chronic hyperalgesia. Because neuropeptide substance P (SP) released from nociceptors mediates pain transmission centrally and neurogenic inflammation peripherally, I probed the role of SP in acid-induced chronic muscle pain. Surprisingly, I found acid-induced SP release mediated an antinociceptive effect in muscle nociceptors.
目錄
正文目錄.....................................................................................................I
表目錄......................................................................................................IV
圖目錄.......................................................................................................V

正文目錄
中文摘要..................................................................................................VI
英文摘要...............................................................................................VIII
1. 緒論.......................................................................................................1
1.1 前言..................................................................................................2
1.2 慢性肌肉疼痛..................................................................................2
1.3 第三型酸敏性離子通道和肌肉疼痛相關......................................4
1.4 瞬態感受器電位陽離子通道和肌肉疼痛相關......................6
1.5 物質P和疼痛之關連......................................................................7
1.6 促發作用與急性疼痛轉變為慢性疼痛之作用機轉相關..............8
1.7 研究目的........................................................................................10
2. 實驗材料與方法.................................................................................11
2.1 實驗動物........................................................................................12
2.2 慢性肌肉疼痛之動物模式............................................................12
2.3 機械性痛覺過敏化及熱痛覺過敏化之行為測試........................13
2.4 血漿外滲實驗................................................................................14
2.5 背根神經節神經元細胞之初代培養............................................15
2.6 全細胞膜片箝制記錄....................................................................15
2.7 酸誘發之鈉離子電流....................................................................16
2.8 電壓門控鈉離子電流....................................................................17
2.9 免疫螢光染色................................................................................18
2.10 統計分析........................................................................................18
3. 實驗結果.............................................................................................20
3.1 酸敏性肌肉傳入神經元之分群....................................................21
3.2 周邊TRPV1參與肌肉重複酸性注射誘發之慢性痛覺過敏化 21
3.3 ASIC3參與痛覺過敏化之促發作用............................................22
3.4 痛覺過敏化促發作用之持續與ASIC3和TRPV1相關..............23
3.5 在肌肉痛覺感受器中,活化ASIC3或TRPV1會增強河豚毒素敏感型(TTXs)和河豚毒素不敏感型(TTXr)電壓門控鈉離子電流 (INaV) ..............................................................................................25
3.6 表現ASIC3的肌肉傳入神經元之分群........................................25
3.7 Nav1.8和PKCε在酸誘發的慢性痛覺過敏化中扮演之角色.....27
3.8 失去物質P的訊息傳遞之作用機轉會加速酸誘發慢性痛覺過敏化....................................................................................................29
3.9 物質P可以阻止酸誘發之慢性痛覺過敏化產生.........................30
3.10 肌肉酸性注射釋放之物質P不會造成神經性炎症反應.............31
3.11 物質P會誘發非ASIC3、TRPV1相關的延長性鎮痛作用.......31
4. 討論.....................................................................................................33
4.1 酸誘發肌肉痛覺感受器促發作用可以經由不同模式所活化....34
4.2 促發作用的持續和促發作用的建立是經由不同機制................35
4.3 ASIC3、TRPV1、Nav1.8在慢性肌肉疼痛中扮演不同作用角色
........................................................................................................36
4.4 PKCε不參與肌肉酸性注射誘發之促發作用和慢性疼痛過敏化
........................................................................................................37
4.5 表現IB4或TRPV1肌肉傳入神經元之細胞分群......................38
4.6 物質P在不同組織作用效果不同.................................................39
4.7 酸誘發鎮痛機制之作用................................................................40
4.8 結論................................................................................................40
參考文獻..................................................................................................68

表目錄
表1 抑制ASIC3與TRPV1會影響重複肌肉酸性注射造成之痛覺過敏 化的維持.........................................................................................42
表2 利用電生理實驗定性分群不同的肌肉傳入背根神經節神經元上ASIC3與TRPV1的表現.................................................................43

圖目錄
圖1 在小型或中型之肌肉傳入背根神經節神經元中,電生理紀錄所得之五種不同類型酸誘發電流曲線..................................................44
圖2 周邊TRPV1參與肌肉酸性注射誘發之機械性痛覺過敏化........46
圖3 ASIC3與TRPV1參與肌肉痛覺感受器之痛覺過敏化促發作用48
圖4 酸會誘發肌肉產生延長性鎮痛作用..............................................50
圖5 在酸誘發之肌肉疼痛模式中,活化ASIC3與TRPV1對於電壓門控鈉離子電流之影響.....................................................................52
圖6 Nav1.8與IB4在肌肉傳入神經元中表現之比例.........................54
圖7 Nav1.8在酸性誘發之慢性肌肉疼痛中所扮演之角色.................55
圖8 在酸性誘發肌肉疼痛模式中,PKCε不參與痛覺感受器促發作用.....................................................................................................56
圖9 SP訊號傳遞對於肌肉酸性注射誘發機械性痛覺過敏化之影響.....................................................................................................58
圖10 SP與ASIC3在酸誘發慢性痛覺過敏化所扮演之角色................60
圖11 酸誘發之SP釋放不會造成肌肉組織神經性炎症反應..............62
圖12 在酸誘發的慢性肌肉疼痛模式中,SP媒介酸所誘發的延長性鎮痛作用............................................................................................64
圖13 離子通道媒介之肌肉痛覺感受器促發作用圖示說明................66

Aley KO, Messing RO, Mochly-Rosen D, Levine JD (2000). Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. The Journal of neuroscience : the official journal of the Society for Neuroscience 20: 4680-4685.

Alvarez P, Chen X, Bogen O, Green PG, Levine JD (2012a). IB4(+) nociceptors mediate persistent muscle pain induced by GDNF. Journal of neurophysiology 108: 2545-2553.

Alvarez P, Gear RW, Green PG, Levine JD (2012b). IB4-saporin attenuates acute and eliminates chronic muscle pain in the rat. Experimental neurology 233: 859-865.

Basbaum AI, Bautista DM, Scherrer G, Julius D (2009). Cellular and molecular mechanisms of pain. Cell 139: 267-284.

Birdsong WT, Fierro L, Williams FG, Spelta V, Naves LA, Knowles M et al (2010). Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron 68: 739-749.

Bogen O, Alessandri-Haber N, Chu C, Gear RW, Levine JD (2012). Generation of a pain memory in the primary afferent nociceptor triggered by PKCepsilon activation of CPEB. The Journal of neuroscience : the official journal of the Society for Neuroscience 32: 2018-2026.

Cao YQ, Mantyh PW, Carlson EJ, Gillespie AM, Epstein CJ, Basbaum AI (1998). Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392: 390-394.

Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824.

Caterina MJ, Julius D (2001). The vanilloid receptor: a molecular gateway to the pain pathway. Annual review of neuroscience 24: 487-517.

Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ (2002). A role for ASIC3 in the modulation of high-intensity pain stimuli. Proceedings of the National Academy of Sciences of the United States of America 99: 8992-8997.

Chen YJ, Huang CW, Lin CS, Chang WH, Sun WH (2009). Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain. Molecular pain 5: 39.

Datar P, Srivastava S, Coutinho E, Govil G (2004). Substance P: structure, function, and therapeutics. Current topics in medicinal chemistry 4: 75-103.

De Felipe C, Herrero JF, O'Brien JA, Palmer JA, Doyle CA, Smith AJ et al (1998). Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392: 394-397.

Deval E, Noel J, Gasull X, Delaunay A, Alloui A, Friend V et al (2011). Acid-sensing ion channels in postoperative pain. The Journal of neuroscience : the official journal of the Society for Neuroscience 31: 6059-6066.

Dina OA, McCarter GC, de Coupade C, Levine JD (2003). Role of the sensory neuron cytoskeleton in second messenger signaling for inflammatory pain. Neuron 39: 613-624.

Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S et al (2004). A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. The EMBO journal 23: 1516-1525.

Ferrari LF, Bogen O, Levine JD (2010). Nociceptor subpopulations involved in hyperalgesic priming. Neuroscience 165: 896-901.

Frey Law LA, Sluka KA, McMullen T, Lee J, Arendt-Nielsen L, Graven-Nielsen T (2008). Acidic buffer induced muscle pain evokes referred pain and mechanical hyperalgesia in humans. Pain 140: 254-264.

Fujii Y, Ozaki N, Taguchi T, Mizumura K, Furukawa K, Sugiura Y (2008). TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain 140: 292-304.

Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT, Corey DP (1997). BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proceedings of the National Academy of Sciences of the United States of America 94: 1459-1464.

Gautam M, Benson CJ, Ranier JD, Light AR, Sluka KA (2012). ASICs Do Not Play a Role in Maintaining Hyperalgesia Induced by Repeated Intramuscular Acid Injections. Pain research and treatment 2012: 817347.

Gautam M, Benson CJ (2013). Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27: 793-802.

Gerard NP, Garraway LA, Eddy RL, Jr., Shows TB, Iijima H, Paquet JL et al (1991). Human substance P receptor (NK-1): organization of the gene, chromosome localization, and functional expression of cDNA clones. Biochemistry 30: 10640-10646.

Hamer PW, McGeachie JM, Davies MJ, Grounds MD (2002). Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. Journal of anatomy 200: 69-79.

Harrison S, Geppetti P (2001). Substance p. The international journal of biochemistry & cell biology 33: 555-576.

Hill R (2000). NK1 (substance P) receptor antagonists--why are they not analgesic in humans? Trends in pharmacological sciences 21: 244-246.

Hokfelt T, Kellerth JO, Nilsson G, Pernow B (1975). Substance p: localization in the central nervous system and in some primary sensory neurons. Science (New York, NY) 190: 889-890.

Huang CW, Tzeng JN, Chen YJ, Tsai WF, Chen CC, Sun WH (2007). Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors. Molecular and cellular neurosciences 36: 195-210.

Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J (2003). Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science (New York, NY) 299: 1237-1240.

Jankowski MP, Rau KK, Ekmann KM, Anderson CE, Koerber HR (2013). Comprehensive phenotyping of group III and IV muscle afferents in mouse. Journal of neurophysiology 109: 2374-2381.

Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF et al (2007). A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proceedings of the National Academy of Sciences of the United States of America 104: 8520-8525.

Ji RR, Kohno T, Moore KA, Woolf CJ (2003). Central sensitization and LTP: do pain and memory share similar mechanisms? Trends in neurosciences 26: 696-705.

Jones NG, Slater R, Cadiou H, McNaughton P, McMahon SB (2004). Acid-induced pain and its modulation in humans. The Journal of neuroscience : the official journal of the Society for Neuroscience 24: 10974-10979.

Joseph EK, Parada CA, Levine JD (2003). Hyperalgesic priming in the rat demonstrates marked sexual dimorphism. Pain 105: 143-150.

Joseph EK, Levine JD (2010). Hyperalgesic priming is restricted to isolectin B4-positive nociceptors. Neuroscience 169: 431-435.

Karczewski J, Spencer RH, Garsky VM, Liang A, Leitl MD, Cato MJ et al (2010). Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. British journal of pharmacology 161: 950-960.

Kingery WS, Guo T, Agashe GS, Davies MF, Clark JD, Maze M (2001). Glucocorticoid inhibition of neuropathic limb edema and cutaneous neurogenic extravasation. Brain research 913: 140-148.

Levine JD, Alessandri-Haber N (2007). TRP channels: targets for the relief of pain. Biochimica et biophysica acta 1772: 989-1003.

Lin YW, Min MY, Lin CC, Chen WN, Wu WL, Yu HM et al (2008). Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3. Neuroscience 151: 544-557.

Lingueglia E (2007). Acid-sensing ion channels in sensory perception. The Journal of biological chemistry 282: 17325-17329.

Maggi CA (1995). The mammalian tachykinin receptors. General pharmacology 26: 911-944.

Maggi CA (2000). Principles of tachykininergic co-transmission in the peripheral and enteric nervous system. Regulatory peptides 93: 53-64.

Marchettini P, Simone DA, Caputi G, Ochoa JL (1996). Pain from excitation of identified muscle nociceptors in humans. Brain research 740: 109-116.

McMahon SB, Sykova E, Wall PD, Woolf CJ, Gibson SJ (1984). Neurogenic extravasation and substance P levels are low in muscle as compared to skin the rat hindlimb. Neuroscience letters 52: 235-240.

Mense S (1993). Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54: 241-289.

Mense S (2008). Muscle pain: mechanisms and clinical significance. Deutsches Arzteblatt international 105: 214-219.

Nakamura T, Colbert MC, Robbins J (2006). Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circulation research 98: 1547-1554.

Nawa H, Kotani H, Nakanishi S (1984). Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312: 729-734.

Nielsen AN, Mathiesen C, Blackburn-Munro G (2004). Pharmacological characterisation of acid-induced muscle allodynia in rats. European journal of pharmacology 487: 93-103.

Ochoa J, Torebjork E (1983). Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. The Journal of physiology 342: 633-654.

Parada CA, Yeh JJ, Reichling DB, Levine JD (2003). Transient attenuation of protein kinase Cepsilon can terminate a chronic hyperalgesic state in the rat. Neuroscience 120: 219-226.

Parada CA, Reichling DB, Levine JD (2005). Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCepsilon second messenger pathways. Pain 113: 185-190.

Price MP, Snyder PM, Welsh MJ (1996). Cloning and expression of a novel human brain Na+ channel. The Journal of biological chemistry 271: 7879-7882.

Quimby LG, Block SR, Gratwick GM (1988). Fibromyalgia: generalized pain intolerance and manifold symptom reporting. The Journal of rheumatology 15: 1264-1270.

Reeh PW, Kress M (2001). Molecular physiology of proton transduction in nociceptors. Current opinion in pharmacology 1: 45-51.

Reichling DB, Levine JD (2009). Critical role of nociceptor plasticity in chronic pain. Trends in neurosciences 32: 611-618.

Sakai H, Lingueglia E, Champigny G, Mattei MG, Lazdunski M (1999). Cloning and functional expression of a novel degenerin-like Na+ channel gene in mammals. The Journal of physiology 519 Pt 2: 323-333.

Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ (2003). Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106: 229-239.

Sluka KA, Radhakrishnan R, Benson CJ, Eshcol JO, Price MP, Babinski K et al (2007). ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 129: 102-112.

Stirling LC, Forlani G, Baker MD, Wood JN, Matthews EA, Dickenson AH et al (2005). Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice. Pain 113: 27-36.

Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K et al (1998). The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531-543.

Tunks E, Crook J, Norman G, Kalaher S (1988). Tender points in fibromyalgia. Pain 34: 11-19.

Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S (2002). Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. The Journal of clinical investigation 110: 1185-1190.

Walder RY, Gautam M, Wilson SP, Benson CJ, Sluka KA (2011). Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 152: 2348-2356.

Walder RY, Radhakrishnan R, Loo L, Rasmussen LA, Mohapatra DP, Wilson SP et al (2012). TRPV1 is important for mechanical and heat sensitivity in uninjured animals and development of heat hypersensitivity after muscle inflammation. Pain 153: 1664-1672.

Waldmann R, Champigny G, Voilley N, Lauritzen I, Lazdunski M (1996). The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. The Journal of biological chemistry 271: 10433-10436.

Waldmann R, Lazdunski M (1998). H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Current opinion in neurobiology 8: 418-424.

Witting N, Svensson P, Gottrup H, Arendt-Nielsen L, Jensen TS (2000). Intramuscular and intradermal injection of capsaicin: a comparison of local and referred pain. Pain 84: 407-412.

Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Katz RS, Mease P et al (2010). The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis care & research 62: 600-610.

Wu WL, Cheng CF, Sun WH, Wong CW, Chen CC (2012). Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacology & therapeutics 134: 127-138.

Zhang H, Cang CL, Kawasaki Y, Liang LL, Zhang YQ, Ji RR et al (2007). Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: a novel pathway for heat hyperalgesia. The Journal of neuroscience : the official journal of the Society for Neuroscience 27: 12067-12077.

Zimmer A, Zimmer AM, Baffi J, Usdin T, Reynolds K, Konig M et al (1998). Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proceedings of the National Academy of Sciences of the United States of America 95: 2630-2635.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔