跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/03 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳育槿
研究生(外文):Yu-Jin Wu
論文名稱:Cyt b、SRY 及 MC1R 基因之多型性與台灣黑豬種原 及毛色之關係
論文名稱(外文):The polymorphism in cytochrome b, SRY and MC1R gene related with parental breed and coat colors in Taiwan black pigs
指導教授:陳銘正陳銘正引用關係
指導教授(外文):Ming-Cheng Chen
口試委員:李賢雄陳威戎胡怡浩劉秀洲
口試日期:2014-06-30
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術與動物科學系生物技術碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:116
中文關鍵詞:黑豬種原毛色
外文關鍵詞:black pigparental breedcoat color
相關次數:
  • 被引用被引用:0
  • 點閱點閱:927
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
台灣黑豬長期與其他豬種配種以增加生長速度,造成黑豬種原與毛色遺傳的不穩定,有時會生出紅棕色之肉豬。一般常被用於研究毛色與種原之相關基因有: 粒線體細胞色素 b 基因、Y 染色體之SRY基因及位於豬第六號染色體上之黑色素接受體 (Melanocortin 1 receptor, MC1R) 基因。本研究之目的乃應用 PCR-RFLP、PCR-HRM 與 PCR-SSCP 檢測細胞色素 b、SRY 與 MC1R 基因之 SNP,建立黑豬種原標幟與毛色基因之檢測技術,並調查台灣各地區超級市場及傳統市場之黑豬肉與豬場飼養黑豬毛色 MC1R 基因與種原標幟之型態與分布。本研究發現黑豬 MC1R 基因 exon 1 具有 G727A 與 G729A 之多型性,且 G727A 可以做為區別黑色與棕色之遺傳標幟。在超級市場、肉攤及豬場黑豬樣品在 G727A 之 GG、 GA 與 AA之基因型頻率分別為 0.15、0.85、0 與 0.34、0.66、0及 0.73、0.27、0,A之對偶基因頻率分別為 0.43、0.33與0.13。另外,在 G729A 位置 GG、 GA 與 AA基因型頻率分別為 0.92、 0.04、 0 .04與 0.61、0.39、0 及 0.69、0.15、0.15, A之對偶基因頻率分別為 0.06 與 0.20 及 0.23。另外檢測粒線體細胞色素 b 基因在 15036 (T/C)、15038 (G/A)、15045 (C/T) 與 15046 (G/A) SNP 所組合成歐洲型 (E=TGCG) 或亞洲型 (A=CATA) 之結果顯示超級市場的黑豬肉有 19 件為歐洲型,8 件為亞洲型;傳統市場者有 46 件歐洲型,28 件為亞洲型;豬場的黑豬有 19 件為歐洲型,7 件為亞洲型,而檢測 SRY 基因在 c.135 (C/G)、c.593 (G/C) 與 c.637 (G/C) SNP 組合成歐洲型 (E=CGG) 或中國型 (C=GGC) 之結果顯示在超級市場與傳統市場收集之 101 件黑豬肉樣品都被歸類為歐洲型,然而從豬場收集之 6 頭黑色公豬被歸類成歐洲型。另外 2 頭來自屏東豬場之黑色公豬,檢測之單倍型與桃園豬相同,此單倍型只存在一些中國豬種或稀少之歐洲豬種中。綜合上述,細胞色素 b 與 SRY 基因可以用來追蹤黑豬之種原關係,以及應用 PCR-PRLP 技術可以正確判定黑豬 MC1R G727A之基因型,避免配種產生紅棕色外觀之肉豬。
To increase the growth rate of the black pig, the creation of a hybrid one has been worked frequently in Taiwan. However, hybridization may influence the parental breed and cause genetic instability in the coat colors of the black pig population; black pigs are typically born with a reddish-brown coat. Three genes associated with the parental breed and coat color of the pig which included the Cytb gene of mitochondria DNA, Y chromosome of the SRY gene, and the melanocortin 1 receptor gene (MC1R) in chromosome 6.
The aim of this study was to establish the polymerase chain reaction (PCR) technique combined with the restriction fragment length (RFLP), the high resolution melting (HRM), and the single-strain conformation polymorphism (SSCP) to detect the Cytb, SRY, and MC1R genes which may be used to determine the breed source and coat color of black pigs obtained from the supermarket, traditional market and pig farm in Taiwan.
Through the analysis of MC1R gene, a single nucleotide alteration was found in the coden 1 at position G727, causing an alanine (GCG) to threonine (ACG) exchange (G>A) and resulting in a reddish-brown phenotype. MC1R G727A can be used as the molecular marker of a black or reddish-brown coat. The genotype frequencies corresponding GG, GA, and AA were 0.15, 0.85, and 0 sampling from the supermarket, 0.34, 0.66 and 0 from the traditional market, and 0.73, 0.27, and 0 from the pig farm, respectively. The allele frequency with A was 0.43 of the supermarket pig, 0.33 of the traditional market pig and 0.13 of the pig farms, respectively. In addition, another nucleotide alteration from GCG to GCA was observed at position G729. The genotype frequencies corresponding to GG, GA, and AA were 0.92, 0.04, and 0.04 sampling from the supermarket, 0.61, 0.39 and 0 from the traditional market and 0.69, 0.15, and 0.15 from the pig farm, respectively. The allele frequencies with A were 0.06, 0.20, and 0.23 of the supermarket pigs, the traditional market pigs, and the pig farms, respectively. The sequence contains 4 SNPs located at positions 15036 (T/C), 15038 (G/A), 15045 (C/T), and 15046 (G/A) of the pig mtDNA, and the European (E = TGCG) and Asian (A = CATA) haplotypes are combined. The originality of swine breeds was determined by conducting a joint analysis of the mitochondrial Cytb gene in 27 black pigs collected from supermarkets, revealing that 19 samples contained the European genotype and 8 samples contained the Asian haplotypes. In addition, 46 and 28 pigs obtained from traditional markets contained the European and Asian haplotypes, respectively, whereas 19 and 7 pigs obtained from pig farms contained the European and Asian haplotypes, respectively. Furthermore, the sequence contains 3 SNPs located at coding positions c.135 (C/G), c.593 (G/C), and c.637 (G/C) on the SRY gene, and the European (E = CGG) and Chinese haplotypes (C = GGC) were combined. However, an analysis of the SRY haplotype indicated that all 101 samples obtained from supermarkets and traditional markets contained the European haplotype. 6 Of the 8 pigs obtained from pig farms were European. Moreover, one SRY haplotype, which was similar to that of a Taoyuan pig, was observed in 2 samples obtained from a pig farm in Pingtung, Taiwan. The uncommon haplotype was observed in several Chinese and rare European breeds. In conclusion, both the Cytb and SRY genes in pigs may provide insight into the phylogenetic relationships of black pigs, and the PCR-PRLP method can be used to determine the genotypes of black pigs to prevent the production of pigs that are phenotypically reddish brown.

中文摘要 I
Abstract III
致謝 VI
表次 XIV
圖次 XVI
壹、前言 1
貳、文獻探討 4
一、台灣黑豬 4
(一) 黑豬的品種 5
(二) 毛色的形成 8
二、種原檢測技術 11
(一) 微衛星DNA 11
(二) 粒線體 12
1. 功能特性 12
2. 粒線體 DNA 在豬的應用 13
(三) Y染色體 14
1. SRY基因的功能及應用 15
2. 比較SRY基因序列差異 16
三、毛色候選基因 17
(一) MC1R基因 17
(二) KIT 基因 19
(三) ASIP基因 21
(四) MITF基因 22
(五) TYR 基因家族 23
(六) 其他毛色候選基因 24
四、基因篩選與檢測的技術 25
(一) 限制片段長度多型性 25
(二) 高解析熔解分析法 26
(三) 單股核苷酸構形多型性 27
參、材料與方法 29
一、試驗大綱流程 29
二、試驗樣品來源 30
(一) 組織樣品 30
(二) 精液樣品 30
(三) 血液樣品 30
(四) 核酸樣品 31
三、核酸萃取 31
(一) 組織DNA之萃取 31
(二) 精液DNA之萃取 32
(三) 血液DNA之萃取 33
四、核酸品質之確立 34
(一) 瓊脂糖膠 (agarose gel) 電泳 34
(二) 超微量分光光度計 35
五、聚合酶鏈鎖反應 35
(一) 引子之設計 35
(二) PCR 反應條件之建立 36
(三) 豬第一型黑色素接受體基因 PCR 反應條件 37
(四) 豬細胞色素 b 基因 PCR反應條件之建立 37
(五) 豬SRY基因 PCR反應條件之建立 37
六、PCR 產物之純化 41
七、分析基因多型性之技術 41
(一) 限制片段長度多型性 (RFLP) 41
(二) 擴增創造限制酵素切位法 (ACRS) 42
(三) 高解析度熔點分析法評估 (HRM) 45
(四) 單股核苷酸多型性 (SSCP) 45
1. SSCP 膠體溶液製備 45
2. 鑄膠玻璃平板之架設 46
3. DNA樣品變性之處理 46
4. 電泳條件 46
5. 膠片染色與呈像 47
八、DNA 定序 49
九、統計分析 49
肆、結果 50
一、台灣黑豬 MC1R 基因 exon 1 codon 243 多型性檢測 50
(一) 建立 PCR-RFLP 分析豬 MC1R exon 1 codon 243基因多型性 50
(二) 以 HRM 法分析豬 MC1R exon 1 codon 243基因多型性 54
二、Cytochrome b基因單倍型檢測法 57
(一) 建立 PCR-RFLP 與 PCR-SSCP 分析技術 57
三、SRY 基因單倍型檢測法 62
(一) 建立 PCR-ACRS 分析技術 62
(二) 建立 PCR-HRM 分析SRY 基因的單倍型 68
四、梅山豬、桃園豬與杜洛克 MC1R、cytochrome b 與SRY基因之標準圖譜 73
(一) 梅山豬標準圖譜 73
(二) 桃園豬標準圖譜 75
(三) 杜洛克標準圖譜 77
五、調查各地區超級市場與傳統市場肉攤所販賣黑豬肉商品 MC1R 基因G727A 與 G729A 多型性 79
(一) 超級市場與傳統市場肉攤所販賣黑豬肉之 MC1R 基因G727A 與 G729A 多型性 79
(二) 宜蘭與屏東豬場黑豬之 MC1R 基因G727A 與 G729A 多型性 85
六、調查各地區超級市場與傳統市場肉攤所販賣黑豬肉之母系種原 88
(一) 超級市場與傳統市場肉攤所販賣黑豬肉之母系種原 88
(二) 調查宜蘭與屏東種豬場黑豬之母系種原 91
七、調查各地區超級市場與傳統市場肉攤所販賣黑豬肉之父系種原 93
(一) 超級市場與傳統市場肉攤所販賣黑豬肉之父系種原 93
(二) 調查宜蘭與屏東種豬場黑豬之父系種原 96
伍、討論 98
一、建立台灣黑豬毛色之檢測法 98
二、建立豬粒線體細胞色素 b 基因單倍型之檢測法 100
三、建立SRY 基因單倍型之檢測法 102
四、各地區對黑豬之偏好 104
陸、結論 107
柒、參考文獻 108

林榮信、徐維謙、黃士哲、彭松鶴。2002。宜蘭地區豬肉拍賣價格與毛色的相關評估。中華農學會報 3(2):106-114。

顏念慈。1999。本土化黑豬的誕生。農政與農情100:71-74。

朱有田與曾純純。2013。臺灣本土黑豬產業在南部六堆地區的傳承與發展。中央研究院台灣史研究所。

鄭智翔。2003。國產黑毛豬與三品種雜交豬肉質特性比較。碩士論文。東海大學。

王旭昌。2013。種豬產業 60 年,第 104 頁。財團法人中央畜產會出版。

行政院農業委員會。2013。台灣地區養豬頭數調查報告。http://www.naif.org.tw/upload/47/20140411_165114.17575.pdf

Anderson, L. 2003. Melanocortin receptor variants with phenotypic effects in horse, pig and chicken. Ann. N. Y. Acad. Sci. 994:313-318.

Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb and N. C. Saumders. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18:489-522.

Barsh, G. S. 1996. The genetics of pigmentation: from fancy genes to complex traits. Trends Genet. 12:299-305.

Bickhart, Derek M. and George E. Liu. 2014. The challenges and importance of structural variation detection in livestock. Front. Genet. 5:37.

Broudy, VC. 1997. Stem cell factor and hematopoiesis. Blood 90:1345-1364.

Brown, W. M., Jr George and A. C. Wilson. 1979. Rapid evolution of mitochondrial DNA. Proc. Natl Acad. Sci. USA 76:1967-1971.

Bourneuf, E., Z. Q. Du, J. Estellé, H. Gilbert, F. Créchet, G. Piton, D. Milan, C. Geffrotin, M. Lathrop, F. Demenais, C. Rogel-Gaillard, and S. Vincent-Naulleau, 2011. Genetic and functional evaluation of MITF as a candidate gene for cutaneous melanoma predisposition in pigs. Mamm. Genome 22:602-612.

Bowlles, J., G. Schepers and P. Koopman. 2000. Phylogeny of the SOX familyof developmental transcription factors based on sequence and
structural indicators. Dev. Biol. 227 (2):239-255.

Bultman, S., E. Michaud and R. Woychik. 1992. Molecular characerization of the mouse agouti locus. Cell 71:1195-1204.

Cieslak, M., M. Reissmann, M. Hofreiter and A. Ludwig. 2011. Colours of domestication. Biol. Rev. 86:885-899.

Cheli, Y., M. Ohanna, R. Ballotti and C. Bertolotto. 2010. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 23:27-40.

Cliffe, K. M., A. E. Day, M. Bagga, K. Siggens, C. R. Quilter, S. Lowden, H. A. Finlayson, C. J. Palagrave, N. Li, Huang, S. C. Blott and C. A. Sargent. 2010. Analysis of the non-recombining Y chromosome defines polymorphisms in domestic pig breeds: ancestral bases identified by comparative sequencing. Anim. Genet. 41:619-629.

Clop, A., M. Amills, J. L. Noguera, A. Fernández, J. Capote, M. M. Ramón, L. Kelly, J. M. H. Kijas, L. Andersson and A. Sãnchez. 2004. Estimating the frequency of Asian cytochrome B haplotypes in standard European and local Spanish pig breeds. Genet. Sel. Evol. 36:97-104.
Cotton, R.G.H. 1993. Current methods of mutation detection. Mutation Res. 285: 125-144.

Dun, G., X. Li, H. Cao, R. Zhou and L. Li. 2007. Variations of Melanocortin Receptor 1 (MC1R) Gene in Three Pig Breeds. J. Genet. Genomics 34(9):777-782.
Fajardo, V., I. González, I. Martín, M. Rojas, P.E. Hernández, T. García and R. Martín. 2008. Differentiation of European wild boar (Sus scrofa scrofa) and domestic swine (Sus scrofa domestica) meats by PCR analysis targeting the mitochondrial D-loop and the nuclear melanocortin receptor 1 (MC1R) genes. Meat Sci. 78:314-322.

Fang, M. and L. Andersson. 2006. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc. boil. Sci. 273:1803-1810.

Fernández, A., L. Silió , C. Rodríguez and C. Ovilo. 2005. Characterization of OCA2 cDNA in different porcine breeds and analysis of its potential effect on skin pigmentation in a red Iberian strain. Anim. Genet. 37:166-170.

Fontanesi, L., E. D' Alessandro, E. Scotti, L. Liotta, A. Crovetti, V. Chiofal and V. Russo. 2010. Genetic heterogeneity and selection signature at the KIT gene in pigs showing different coat colours and patterns. Anim. Genet. 41:478-492.

Galtier, N., B. Nabholz, S. Glémin and GD Hurst. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 18:4541-4550.

Giuffra, E., G. Evans, A. Törnsten, R. Wales, A. Day, H. Looft, G. Plastow,L. Andersson. 1999. The Belt mutation in pigs is an allele at the Dominant white (I/KIT) locus. Mamm. Genome 10:1132-1136.

Girardot, M, J. Martin, S. Guibert , H. Leveziel , R. Julien and A. Oulmouden . 2005. Widespread expression of the bovine Agouti gene results from at least three alternative promoters. Pigment Cell Res. 18:34-41.
Gustafsson, A. C., J. M. H. Kijas, A. Alderborn, M. Uhlén, L. Andersson, and J. Lundeberg. 2001. Screening and scanning of single nucleotide polymorphisms in the pig melanocortin 1 receptor gene (MC1R) by pyrosequencing. Anim. Biotechnol. 12:145-153.

Harrison, R. G. 1989. Animal mitochondrial DNA as a genetic marker in population biology and evolutionary biology. Trends Ecol. Evol. 3:535-546.

Hayashi, K. 1991. PCR-SSCP: A Simple and Sensitive Method for Detection of Mutations in the Genomic DNA. Genome Res. 1:34-38.

Hirooka, H., D. J. de Koning, J. A. M. van Arendonk, B. Harlizius, P. N. de
Groot, and H. Bovenhuis. 2002. Genome Scan Reveals New Coat Color Loci in Exotic Pig Cross. AGA 93:1-8.

Huang, Y., X. Shi and Y. Zhang. 1999. Mitochondrial genetic variation in Chinese pigs and wild boars. Biochem. Genet. 37:335-43.

Hubbard, S.R., L. Wei, L. Ellis, and W. A. Hendrickson. 1994. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746-754.

Jackson, I.J. 1994. Molecular and developmental genetics of mouse coat color. Annu. Rev. Genet. 28:189-217.

Johansson Moller, M., R. Chaudhary, E. Hellmén, B. Höyheim, B. Chowdhary and L. Andersson. 1996. Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm Genome 7:822-30.

Jones, G. F. 1998 Genetic aspects of domestication, common breeds and their origin, in: Rothschild M. F., Ruvinsky A. (Eds.), The Genetics of the Pig, CAB International, Wellingford, Oxon, UK. 17-50.




Kerns, J.A., J. Newton, T. G. Berryere, E. M. Rubin, Cheng J. F.,S. M. Schmutz and G. S. Barsh. 2004. Characterization of the dog Agouti gene and a nonagoutimutation in German Shepherd Dogs. Mamm Genome 15, 798-808.

Kijas, J. M. H., R. Wales, A. Törnsten, P. Chardon, M. Moller, and L. Andersson. 1998. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150:1177-1185.

Kijas, J. M. H., M. Moller, G. Plastow, and L. Andersson. 2001. A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics 15:779-785.

Kim, K.I., J. H. Lee, K. Li, Y. P. Zhang, S. S. Lee, J. Gongora and C. Moran. 2002. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33:19-25.

Kumar, R. and M. Barbacid. 1988. Oncogene detection at the single cell level. Oncogene. 3:647-651.

Kwon, H. Y., S. J. Bultman, C. Loffler, W. J. Chen, P. J. Furdon, J. G. Powell, A. L. Usala, W. Wilkison, I. Hansmann, and R.BP. Woychik. 1994. Molecular structure and chromosomal mapping of the human homolog of the agouti gene. Proc. Natl. Acad. Sci. USA 91:9760-9764.

Larson, G. K. Dobney, U. Albarella, M. Fang, E. Matisoo-Smith, J. Robins, S. Lowden, H. Finlayson,T. Brand, E Willerslev,1 P. Rowley-Conwy, L. Andersson and A .Cooper. 2005. Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication. Science 307:1618-1621.

Levy, C., M. Khaled and D. E. Fisher. 2006. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12(9):406-414.



Lin, C. S., C. Y. Liu, H. T. Wu, Y. L. Sun, L. C. Chang, N. T. Yen, P. C. Yang, M. C. Huang and S. J. T. Mao. 1998. SSCP analysis in the D-loop region of porcine mitochondria1 DNA as confirmed by sequence diversity. J. Anim. Breed. Genet. 115:73-78.

Linda, H. and E. Hans. 2004. Low levels of nucleotide diversity in mammalian Y chromosomes. Mol. Biol. Evol. 21:158-163.

Linnekin, D. 1999. Early signaling pathways activated by c-Kit in hematopoietic cells. Int. J. Biochem. Cell Biol. 31:1053-1074.

Lomas, J., P. Martin-Duque, M. Pons and M. Quintanilla. 2008. The genetics of malignant melanoma. Front. Biosci. 5071-5093.

Lu, D., D. Willard, I. R. Patel, S. Kadwell, L. Overton, T. Kost, M. Luther, W. Chen, R. P. Woychik, W. O. Wilfkison. and R. D. Cone. 1994. Agouti protein is an antagonist of the melanocyte-stimulating receptor. Nature 371: 799-802.

Mamuris, Z., K. A. Moutou, C. Stamatis, T. Sarafidou and F. Suchentrunk. 2010. Y DNA and mitochondrial lineages in European and Asian populations of the brown hare (Lepus europaeus). Mamm. Biol.75:233-242.

Mao, H., J. REN, N. Ding, S. Xiao, and L. Huang. 2010. Genetic variation within coat color genes of MC1R and ASIP in Chinese brownish red Tibetan pigs. Anim. Sci. J. 81:630-634.

Marklund, S., J. Kijas, H. Rodriguez-Martinez, L. Rönnstrand, K. Funa, M. Moller, D. Lange, I. Edfors-Lilja and L. Andersson. 1998. Molecular Basis for the Dominant White Phenotype in the Domestic. Genome Res. 8:826-833.

Megens, H. J., R. P. Crooijmans, San Cristobal, H. Xiao, L. Ning and M. A. Groenen. 2008. Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet. Sel. Evol. 40:103-128.
Okumura, N., N. Ishiguro, M. Nakano, K. Hiral, A. Matsui and M. Sahara. 1996. Geographic population structure and sequence divergence in the mitochondrial DNA control region of the Japanese wild boar (Sus scrofa leucomystax), with reference to those of domestic pigs. Biochem. Genet. 34:179-89.

Okumura, N., Y. Kurosawa, E. Kobayashi, T. Watanobe, N. Ishiguro, H. Yasue and T. Mitsuhashi. 2001. Genetic relationship amongst the major non-coding regions of mitochondrial DNAs in wild boars and several breeds of domesticated pigs. Anim. Genet. 32:139-147.

Pamilo, P., M. Nei. 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5(5): 568-583.

Poliseno L ed. 2014. Pseudogenes: Functions and Protocols, Methods in Molecular Biology. Springer Science vol. 1167.

Ramírez, O., A. Ojeda, A. Tomãs, D. Gallardo, L. S. Huang, J. M. Folch, A. Clop, A. Sánchez, B. Badaoui, O. Hanotte, O. Galman-Omitogun, S.M. Makuza, H. Soto, J. Cadillo, L. Kelly, I. C. Cho, S. Yeghoyan, M. Pérez-Enciso and M. Amills. 2009. Integrating Y-Chromosome, Mitochondrial, and Autosomal Data to Analyze the Origin of Pig Breeds. Mol. Biol. Evol. 26(9):2061-2072.

Ren, J., H. Mao, Z. Zhang, S. Xiao, N. Ding and L. Huang. 2011. A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs. Heredity 106:862-868.

Ross, D. GF., J. Bowles, P. Koopman and S. Lehnert. 2008. New insights into SRY regulation through identification of 5’ conserved sequences. BMC Mol. Bio. 9, 85.

Schaffner, S. F. 2004. The X chromosome in population genetics. Nat. Rev. Genet. 5:43-51.

Sette, C., S. Dolci, R. Geremia and P. Rossi. 2000. The role of stem cell factor and of alternative c-kit gene products in the establishment, maintenance and function of germ cells. Int. J. Dev. Biol. 44:599-608.
Soares, S., J. S. Amaral, I. Mafra, M. Beatriz and P. P. Oliveira. 2010. Quantitative detection of poultry meat adulteration with pork by a duplex PCR assay. Meat Sci. 85:531-536.

Spielmann, M., and E. Klopocki. 2013. CNVs of noncoding cis-regulatory elements in human disease. Curr. Opin. Genet. Dev. 23:249-256.

Sturm, R.A., R. D. Teasdale and N. F. Box. 2001. Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene 17:49-62.

Switonski, M., M. Mankowska and S. Salamon. 2013. Family of melanocortin receptor (MCR) genes in mammals-mutations, polymorphisms and phenotypic effects. J. Appl. Generics 54:461-472.

Vachtenheim, J. and J. Borovanský. 2010. ‘‘Transcription physiology’’ of pigment formation in melanocytes: central role of MITF. Experimental Dermatology. 19:617-627.

Vage, D.I., D.Lu, H. Klungland, S .Lien, S. Adalsteinsson and R. D. Cone.1997. A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes. Nat. Genet. 15:311-315.

Vossen, R.H., E. Aten, A. Roos, J. T. den Dunnen. 2009. High Resolution Melting Analysis (HRMA)—more than just sequence variant screening. Hum. Mutat. 30:860-866.

Watanabe, T., Y. Hayashi, N. Ogasawara and T. Tomita. 1985. Polymorphism of mitochondrial DNA in pigs based on restriction endonuclease cleavage patterns. Biochem. Genet. 23:105-13.

Wehrle-Haller, B. and J. A. Weston. 1997. Receptor tyrosine kinase dependent neural crest migration in response to differentially localized growth factors. Bioessays 19:337-345.

Wittwer, C.T., G. Reed, C. N. Gundry, J. G. Vandersteen and R. J. Pryor. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem. 49:853-860.
Wolstenhome, D. R. 1992. Animal mitochondrial DNA: structure and evolution. Int. Rev. Cytol. 141:173-215.

Yu, H. T., G. C. Ma, D. J. Lee, S. C. Chin, H. S. Tsao, S. H. Wu, S. Y. Shih and M. Chen. 2011. Molecular delineation of the Y-borne Sry gene in the Formosan pangolin (Manis pentadactyla pentadactyla) and its phylogenetic implications for Pholidota in extant mammals. Theriogenology. 75:55-64.

Zhao, L. and P. Koopman. 2012. SRY protein function in sex determination: thinking outside the box. Chromosome Res. 20:153-162.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top