(100.26.179.251) 您好!臺灣時間:2021/04/14 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周柔安
研究生(外文):Rou-An Jhou
論文名稱:採前遮陰處理對寄接‘豐水’梨果肉水心症及採後品質之影響
論文名稱(外文):Flesh Watercore and Postharvest Quality of Top-grafted Pear (Pyrus pyrifolia Nakai cv. ‘Hosui’) as Affected by Preharvest Shading Treatment
指導教授:郭純德郭純德引用關係尤進欽
指導教授(外文):Chun-Teh KuoJinn-Chin Yiu
口試委員:李堂察謝慶昌尤進欽郭純德
口試委員(外文):Tan-Cha LeeChing-Chang ShieshJinn-Chin YiuChun-Teh Kuo
口試日期:2014-05-30
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:園藝學系碩士班
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:65
中文關鍵詞:‘豐水’梨採前遮陰果實生長分析採收成熟度果實套袋套袋內留果數果肉水心症果實品質貯藏力
外文關鍵詞:‘Hosui’ pearpreharvest shading treatmentfruit growth analysisharvest maturityfruit baggingretention number of fruit in bagflesh watercorefruit qualitystorability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:402
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討採前遮陰(遮光65%)與採收成熟度(盛花後131、138、145及150天)、不同套袋層數(2、3及4層套袋)和套袋內不同留果數(1、2和3果)對‘豐水’梨果肉水心症發生率及果實品質和貯藏力之影響。
遮陰之果實縱徑累積生長量在發育期間,略高於未遮陰者,但差異不顯著;而果實橫徑之累積生長量,二處理間幾無差異。自盛花後84天起,梨果果形指數皆小於1,表示果實橫徑生長量大於縱徑,梨果呈扁圓形。果實縱徑與橫徑之絕對和相對生長速率,皆在盛花後91天(5/14)達到最大的生長高峰。而進行遮陰處理(6/16)後,對二者並無顯著影響。利用果實絕對生長曲線下降部分,估算生理成熟度為盛花後156至175天之間。每週累積落果率隨成熟度增加而上升,且最終遮陰與未遮陰之梨果累積落果率皆達到33%。果實發育期間每週落果率最高為8 %,然而進行遮陰處理後,遮陰之每週落果率明顯下降,且在盛花後第126和140天(0 %及3 %),皆明顯地低於未遮陰者(均為9 %)。遮陰與未遮陰之梨果肉水心症係數皆為0.1。遮陰之梨果肉水心症發生率為2 %,低於未遮陰者(10 %)。遮陰只對梨果皮之L值有顯著影響(P< 0.05),遮陰之果皮L值高於未遮陰者。然而,遮陰之梨果重量、總可溶性固形物和可滴定酸含量與未遮陰者差異不顯著,但遮陰之果肉硬度低於未遮陰者,差異顯著。梨果肉水心症係數與發生率,均會隨採收成熟度的增加而上升;水心症係數由0上升至0.2,而水心症發生率從0 %上升至15 %。採收成熟度只對梨果皮之a*值影響顯著(P< 0.05),並且其隨著成熟度的增加而上升。採收成熟度對梨果重量、果肉硬度及總可溶性固形物含量影響顯著(P< 0.05)
,梨果重量與總可溶性固形物隨成熟度增加而上升,而果肉硬度隨之下降。可滴定酸含量隨成熟度增加而上升,但差異不顯著。在遮陰與採收成熟度二處理下,遮陰之梨果僅於盛花後145天(7/7)有果肉水心症之發生,其水心症係數與發生率分別為0.2及8 %。而未遮陰之梨果,分別在盛花後138以及150天發生水心症;盛花後138天梨果水心症係數與發生率,分別為0.1及8 %,均低於盛花後150天之梨果水心症係數(0.3)與發生率(30 %)。遮陰與採收成熟度二處理因子,在梨果皮色澤(L、a*、b*值)以及果實重量、果肉硬度、總可溶性固形物和可滴定酸含量皆無交互作用。
遮陰之梨果肉水心症係數(0.3)及發生率(16 %),均明顯地低於未遮陰者(0.6及35 %)。遮陰只對梨果皮L值和b*值影響顯著(P< 0.05),遮陰之果皮L值大於未遮陰者,而b*值則反之。遮陰之梨果重量和總可溶性固形物含量小於未遮陰者,而可滴定酸含量則反之,差異顯著。梨果肉水心症係數與發生率,均隨套袋層數增加而下降;水心症係數從0.6降至0.3,而水心症發生率則從30 %降至22 %。套袋層數對果皮之L、a*和b*值影響顯著,且隨套袋層數增加而上升。2層袋之梨果最重,可滴定酸含量最低,差異顯著。3層袋之梨果總可溶性固形物含量最高,差異顯著。4層袋之梨果重量及總可溶性固形物含量最低,差異顯著,而可滴定酸含量與3層袋者差異不顯著。在遮陰與套袋二處理下,遮陰與未遮陰之梨果水心症係數,皆隨套袋層數增加而下降;遮陰者從0.4降至0.1,未遮陰者則從0.8降至0.5。遮陰之3層袋梨果肉水心症發生率(20 %)最高,2層者(17 %)次之,4層者(10 %)最低;未遮陰之2層袋梨果肉水心症發生率(43 %)最高,4層者(33 %)次之,3層者(30 %)最低。遮陰或套袋層數對果肉硬度,皆無顯著影響。遮陰與套袋層數,僅在梨果皮之L值、a*值以及果實之總可溶性固形物與可滴定酸含量有交互作用(P< 0.05)。
貯藏前,遮陰之梨果肉水心症係數(0.2)與發生率(22 %),均低於未遮陰者(0.8及64 %)。遮陰對梨果皮之L、a*、b*值,無顯著影響。然而,遮陰對梨果重量及果肉硬度影響顯著;遮陰之梨果重量小於未遮陰者,而果肉硬度則反之。不過遮陰對總可溶性固形物及可滴定酸含量,則無顯著影響。留2果之果肉水心症係數(0.1),低於留1、3果者(均為0.8)。而梨果水心症發生率,亦為留2果者(13 %)明顯地低於留1、3果者(50 %及67 %)。留果數對梨果皮b*值影響顯著(P< 0.05),留1果之果皮b*值最高,留3果者次之,留2果者最低,且差異顯著。留果數只對梨果重量影響顯著,留1果者之果實最重,差異顯著,而留2、3果者次之,且二者間差異不顯著。在遮陰與留果數二處理下,遮陰之留3果者,其水心症係數(0.7)與發生率(67 %)最高,而留1、2果者皆無發生水心症。未遮陰之留1果者,其果肉水心症係數(1.5)與發生率(100 %)最高,留3果者(0.8及67 %)次之,留2果者(0.2及25 %)最低。遮陰與留果數二處理因子,僅在果皮L值有交互作用(P< 0.05)。但在梨果重量、果肉硬度、總可溶性固形物及可滴定酸含量皆無交互作用。經5℃貯藏4、8和12週後,遮陰之梨果在貯藏第4週時,其果肉水心症係數從0.2上升至0.8,但仍低於未遮陰者(0.8上升至1.0);貯藏8和12週後,遮陰與未遮陰之果肉水心症係數均為0.7和1.0。然而,經貯藏4、8和12週後,遮陰之梨果肉水心症發生率(78 %、72 %及83 %)皆高於未遮陰者(72 %、64 %及69 %)。遮陰與未遮陰之梨果皮L、a*、b*值差異不顯著,梨果皮之L值隨貯藏週數增加而下降,而a*、b*值則隨之上升。經5℃貯藏4和8週後,留2果之果肉水心症係數(貯藏前為0.1)有明顯地上升(1.4及0.9),且均高於留1、3果者(0.8及0.5;0.7及0.7);而貯藏第12週時,水心症係數隨留果數增加而下降(1.1、1.0及0.9)。梨果水心症發生率在貯藏第4和8週時,亦以留2果者(100 %及88 %)高於留1、3果者(75 %及50 %;50 %及67 %);貯藏第12週時,水心症發生率則隨留果數增加而上升(50 %、88 %及92 %)。不同留果數間梨果皮之L值和a*值差異不顯著,而梨果皮之b*值則在貯藏8週後,留3果者高於留1、2果者,差異顯著。遮陰與留果數二處理下,梨果重量會隨著貯藏時間增長而下降,失重率則反之,且貯藏12週後,失重率皆高於4 %。然而,果肉硬度隨貯藏週數的增長,由5 N降至3N。總可溶性固形物含量無明顯一致的變化趨勢,但可滴定酸含量隨貯藏週數增加而提高,使糖酸比隨之下降。

The thesis explores effects of preharvest shading treatment (shading 65 %) and harvest maturity (131, 138, 145 and 150 days after anthesis), various fruit bagging layers (2, 3, and 4 layers bagging) and various fruit retention number (1, 2 and 3 fruits) in bag toward top-grafted pear (Pyrus pyrifolia Nakai cv. Hosui) flesh watercore incidence rate and fruit quality and storability.
During developmental period, cumulative growth of fruit longitudinal diameter with shading is slightly higher than that without shading, but there is no significant difference; while there is almost no difference in cumulative growth of fruit transverse diameter. From 84 days after anthesis, pear fruit shape indexes are all less than 1, showing that fruit transverse diameter growth is greater than longitudinal diameter, and pear shape presents flat round shape. Absolute and relative growth rate of fruit longitudinal diameter and transverse diameter all reach maximum growth peak at 91 days (5/14) after anthesis. While there is no significant effect to both after shading treatment (6/16) conducted. By use of decline part of fruit absolute growth curve, estimated physical maturity is between 156 and 175 days after anthesis. Weekly cumulative fruit drop rate of shading and non-shading treatment are rise along with maturity increasing, and both are reach 33 % before harvest. During fruit growth development period, the highest weekly fruit drop rate is 8 %, however, after shading treatment, the weekly fruit drop rate is apparently lower, and in 126 (6/18) and 140 (7/2) days after anthesis (0 % and 3 %), it becomes apparently lower than that without shading (both are 9 %). Pear flesh watercore coefficient with shading and without shading are both 0.1. Incidence rate of pear flesh watercore with shading is 2%, lower than that without shading (10%). There is only significant effect of shading toward L value of peel (P< 0.05), and peel L value with shading is higher than that without shading. However, there is no significant difference in pear fruit weight, total soluble solids and titratable acid between with shading and without shading, but, there is significant difference in flesh firmness that with shading lower than that of without shading. Pear flesh watercore coefficient and incidence rate both rise along with harvest maturity increasing; where watercore coefficient rises from 0 to 0.2, and watercore incidence rate rises from 0 % to 15 %. There is only significant effect of harvest maturity toward a* value of peel (P< 0.05), and peel a* value rises along with harvest maturity increasing. Harvest maturity has significant effect (P< 0.05) toward pear fruit weight, flesh firmness, and total soluble solids contents, and fruit weight and total soluble solids rise along with maturity increasing, meanwhile flesh firmness decline. Titratable acid rises along with maturity increasing, but no significant difference. Under treatment of shading and harvest maturity, pears with shading have flesh watercore incidence only at 145 days (7/7) after anthesis, its watercore coefficient and incidence rate are 0.2 and 8 %, respectively. While pears without shading have watercore incidence at 138 and 150 days after anthesis; pear watercore coefficient and incidence rate at 138 days after anthesis are 0.1 and 8 % respectively, both lower than pear watercore coefficient (0.3) and incidence rate (30%) at 150 days after anthesis. The two treatment factors of shading and harvest maturity have no interaction effect between the pear peel color (L, a* and b* value), fruit weight, flesh firmness, total soluble solids and titratable acid.
With shading, pear flesh watercore coefficient (0.3) and incidence rate (16 %) are all apparently lower than that of without shading (0.6 and 35 %). Shading treatment only resulted in significant effect toward L and b* values of pear peel (P< 0.05), peel L value of shading treatment is greater than that without shading, while b* value is in contrast. Pear fruit weight and total soluble solids are less than that without shading, and titratable acid is in contrast, the difference is significant. Pear flesh watercore coefficient and incidence rate are both decrease along with layer number increasing; where watercore coefficient decline from 0.6 to 0.3, and watercore incidence rate decline from 30 % to 22 %. Effects of bagging layer number toward L, a*, and b* values are significant, and rising along with increasing of bagging layer number. Pears with 2 layers bagging are the heaviest, and titratable acid are the lowest, the difference is significant. Content of total soluble solids of pears with 3 layer bagging is the highest, and the difference is significant. Weight and total soluble solids content of pears with 4 layer bagging are the lowest, and the difference is significant, while there is no significant difference for titratable acid than that with 3 layer bagging. Under two treatment of shading and fruit bagging, pear watercore coefficient of both with shading and without shading decline along with bag layer increasing; where with shading decline from 0.4 to 0.1, without shading decline from 0.8 to 0.5. The pear watercore incidence rate of shading with 3 layer bagging is the highest (20 %), 4 layer bagging followed (33 %), and 4 layer bagging is the lowest. Shading treatment or fruit bagging layer have no significant effect toward flesh firmness. Shading treatment or fruit bagging layer only have interaction effect between L and a* value of peel, and fruit total soluble solids and titratable acid content (P< 0.05).
Before storage, the shading pear flesh watercore coefficient (0.2) and incidence rate (22 %) are both lower than that without shading (0.8 and 64 %). The shading treatment is no significant effect toward L, a*, and b* values of pear peel. However, there is significant effect of shading toward pear flesh weight and flesh firmness; pear weight with shading is less than that without shading, while flesh firmness is in contrast. Furthermore, there is no significant effect of shading toward total soluble solids and titratable acid. Watercore coefficient of retention 2 fruit in bag (0.1) is lower than that retentions 1 and 3 fruits (both are 0.8). Moreover, the watercore incidence rate of retention 2 fruits (13 %) is significantly lower than that retentions 1 and 3 fruits (50 % and 67 %). Effect of retention number of fruit is significant toward b* value of pear peel (P< 0.05), retention 1 fruit has highest peel b* value, retentions 3 fruits followed, and retention 2 fruits is the lowest, and the difference is significant. Fruit retention number only has significant effect toward pear weight, retention 1 fruit has heaviest weight with significant difference, and retention 2 and 3 fruits followed, where no significant difference between the two. Under two treatments of shading and retention number of fruit, retention 3 fruits of shading treatment, its watercore coefficient (0.7) and incidence rate (67 %) are the highest, while retention 1and 2 fruits both have no watercore incidence. Without shading and retention 1 fruit, its flesh watercore coefficient (1.5) and incidence rate (100 %) is the highest, while retention 3 frutis (0.8 and 67 %) followed, retention 2 fruits (0.2 and 25 %) are the lowest. The factors of two treatment of shading and retention number of fruit only have interaction effect toward peel L value (P< 0.05). However, there is no interaction effect between pear fruit weight, flesh firmness, total soluble solids and titratable acid. After storage for 4, 8 and 12 weeks at 5℃, pears with shading at 4th week, its flesh watercore coefficient rises from 0.2 to 0.8, but still lower than that without shading (rises from 0.8 to 1.0); after storage for 8 and 12 weeks, flesh watercore coefficient of with shading and without shading are both 0.7 and 1.0.Whereas after storage for 4, 8, and 12 weeks, pears with shading have flesh watercore incidence rate (78 %, 72 % and 83 %) which are all higher than that without shading (72 %, 64 % and 69 %). Pear peel L, a*, b* values of with shading and without shading have no significant difference, pear peel L value decline along with storage week increasing, while a*, b* values rise with it.After storage for 4 and 8 weeks at 5℃, flesh watercore coefficient of retention 2 fruits (0.1 before storage) has apparent rise (1.4 and 0.9), and both higher than that of retention 1 and 3 fruits (0.8 and 0.5; 0.7 and 0.7); while at storage for 12 weeks, flesh watercore coefficient decline along with fruit retention number (1.1, 1.0 and 0.9) increasing. At storage for 4 and 8 weeks, pear flesh watercore incidence rates of retention 2 fruits (100 % and 88 %) are higher than that of retention 1 and 3 fruits (75 % and 50 %; 50 % and 67 %); at storage for 12 weeks, watercore incidence rate rising along with fruit retention number increasing (50 %, 88 % and 92 %). L value and a* value of pear peel among different fruit retentions have no significant difference, while at 8 weeks storage, pear peel b* value of retention 3 fruits is higher than that of retention 1 and 2 fruits, and with apparent difference. Under two treatment of shading and retention number of fruit, pear weight is decline along with storage week number increasing, and weight losing rate is in contrast, and after storage for 12 weeks, weight losing rate all higher than 4 %. Furthermore, flesh firmness is decline along with storage week number increasing, from 5 N to 3 N. Although, total soluble solids have no apparent consistent changing trend, however, titratable acid rises along with storage week number increasing, and thereby sugar-acid ratio decline with it.

中文摘要……………………………………………………………………………………….i
英文摘要……………………………………………………………………………………...iii
目錄…………………………………………………………………………………………...vi
表目錄………………………………………………………………………………………..vii
圖目錄……………………………………………………………………………………….viii
壹、緒言 …………………………………………………………………………………....1-1
貳、採前遮陰與採收成熟度對寄接‘豐水’梨果實生長及品質之影響
一、摘要………………………………………………………………………………..2-1
二、前言………………………………………………………………………………..2-2
三、材料與方法………………………………………………………………………..2-2
四、結果………………………………………………………………………………..2-4
五、討論………………………………………………………………………………..2-5
六、圖表………………………………………………………………………………..2-7
七、參考文獻………………………………………………………………………....2-18
八、英文摘要………………………………………………………………………....2-19
参、採前遮陰與果實套袋對寄接‘豐水’梨果肉水心症及果實品質發生之影響
一、摘要………………………………………………………………………………..3-1
二、前言………………………………………………………………………………..3-2
三、材料與方法………………………………………………………………………..3-2
四、結果………………………………………………………………………………..3-3
五、討論………………………………………………………………………………..3-5
六、圖表………………………………………………………………………………..3-7
七、參考文獻…………………………………………………………………………3-15
八、英文摘要…………………………………………………………………………3-16
肆、採前遮陰及套袋內留果數對寄接‘豐水’梨採收後品質及貯藏力之影響
一、摘要………………………………………………………………………………..4-1
二、前言………………………………………………………………………………..4-2
三、材料與方法………………………………………………………………………..4-2
四、結果………………………………………………………………………………..4-3
五、討論………………………………………………………………………………..4-5
六、圖表………………………………………………………………………………..4-6
七、參考文獻………………………………………………………………………....4-13
八、英文摘要……………………………………………………………………….... 4-14
伍、結論……………………………………………………………………………………..5-1

王自存。2012。園產品處理學。國立台灣大學。園藝暨景觀學系。園產品處理研究室。167 pp.。
王國川。2005。圖解SAS在變異數分析上的應用。pp. 384-415。五南圖書出版股份有限公司。台北。
行政院農業委員會。2013。農業統計年報(101年)。
江淑雯、盧柏松。2011。套袋對臍橙果實品質之影響。臺東區農業改良場研究彙報。21:37-50。
李國明。2009。高接梨梨蜜症之發生與預防。花蓮區農業專訊第七十期。pp. 14-17。
林嘉興。1986。橫山梨與高接梨栽培管理技術。台中區農業改良場特刊第4號。pp. 52。
林傑斌、吳東霖與張誌娟。2008。SAS 9.X統計建模與分析程序。第12章。文魁資訊股份有限公司。台北。
邱信智。2010。砧木、套袋和成熟度對茂谷柑果實品質與貯藏之影響。國立宜蘭大學園藝系碩士論文。
邱祝櫻。1997。疏果及套袋對印度棗產量及品質之影響。高雄區農業改良場研究彙報 9(1):34-43.
徐信次、黃和炎。2000。寄接梨之栽培管理。臺南區農業改良場技術專刊。29 pp.。行政院農業委員會。
高景輝。1987。植物生長與分化。pp. 7-12。茂昌圖書有限公司。台北。
郭純德、尤進欽。2005。低溫貯藏對‘新雪’梨果皮黑變與微觀結構及抗氧化酵素變化之影響。宜蘭大學生物資源學刊 2(1):25-36。
郭純德、尤進欽。2005。採收後‘新雪’梨果皮黑變之研究。梨栽培管理技術研討會專集。pp. 465-494。台中。
郭純德、趙婉琪、尤進欽、廖玉琬。2006。寄接豐水梨果實生長分析與採收成熟度對果實品質及水心症發生之影響。宜蘭大學生物資源學刊 3(1):69-83。
張祖亮。2001。設施栽培環境監測與控制。設施栽培自動化專輯。p.7。
黃阿賢。1993。套袋對文旦果實生長、品質與袋內溫度的影響。中國園藝。39:198-208。
黃阿賢、徐信次、黃光亮、許世弦。2006。葡萄柚果實的色澤。中國園藝52:393-400。
趙婉琪。2007。寄接‘豐水’梨果肉水心症之研究。國立宜蘭大學園藝系碩士論文。
廖萬正。2005。台灣梨栽培技術之發展。梨栽培管理技術研討會專集。pp. 47-54。台中。
鄭西民、韓振海、李紹華。1999。果樹生物學。pp. 102-106。高等教育出版社。北京。
劉富文。1994。園產品採後處理及貯藏技術。pp. 178。台灣省青果運銷合作社。
劉雲聰、張哲嘉。2005。豐水梨梨蜜症的發生與預防對策。梨栽培管理技術研討會專集。pp. 193-215。台中。
潘智珩。2011。‘臺中2號’梨採收期與貯藏品質之研究。國立宜蘭大學園藝系碩士論文。
盧柏松。2005。高接梨嫁接適期之研究。梨栽培管理技術研討會專集。pp. 175-190。台中。
謝慶昌、薛淑滿。2005。梨之採收後處理。梨栽培管理技術研討會專集。pp. 495-500。台中。
Amarante, C., N. H. Banks, and S. Max. 2002. Effect of pre-harvest bagging on fruit quality and Postharvest physiology of pears (Pyrus communis). New Zealand Journal of Crop and Horticultural Science. 30: 99-107.
Bentley, W.J. and M. Viveros. 1992. Brown-bagging ‘Granny Smith’ apples on trees stopscodling moth damage. California Agriculture. 46: 30-32.
Dussi, M. C., G. Giardina, D. Sosa, R. González Junyent, A. Zecca, and P. Reeb. 2005.
Shade nets effect on canopy light distribution and quality of fruit and spur leaf on apple cv. Fuji. Spanish Journal of Agricultural Research. 3(2): 253-260.
Ferguson, I. B., W. Snelgar, M. Lay-Yee, C. B. Watkins, and J. H. Bowen. 1998. Heat
shock response in apple fruit in the field. Aust. J. Plant. Physiol. 25:155-163.
Ferguson, I. B., R. K.Volz and A. B. Woolf. 1999a. Preharvest factors affecting
physiological disorders of fruit. Postharvest Biol. Technol. 15, 255-262.
Fisher, D. F., C. P. Harley, and C. Brooks. 1930. The influence of temperature on the development of watercore. Abstr. Proc. Amer. Soc. Hort. Sci. 27:276-280.
Huang, C., B. Yu, Y. Teng, J. Su., Q. Shu, Z. Cheng, and L. Zeng. 2009. Effects of fruit bagging on coloring and related physiology, and qualities of red Chinese sand pears during fruit maturation. Scientia Horticulturae. 121:149-158.
Joyce, D. C., D. R. Beasley, and A. J. Shorter. 1997. Effect of pre-harvest bagging on fruit calcium levels, and storage and ripening characteristics of ‘Sensation’ mangoes. Australian Journal of Experimental Agriculture. 37:383-389.
Jia, H. J., A. Araki, and G. Okamoto. 2005. Influence of fruit bagging on aroma
volatiles and skin coloration of ‘Hakuho’ peach (Prunus persica Batsch). Postharvest Biol.Technol. 35:61–68.
Kajiura, I., M. Omura, and I. Shimura. 1981. Determination of the optimum maturity
for harvest and the best harvesting index of Japanese pear (Pyrus serotina Rehder. var. culta) cv. Hosui. (In Japanese, English summary). Bull. Fruit Tree Res. Stn. A. 8: 1-12.
Lee, S. K. and R. E. Young. 1983. Growth measurement as an indication of avocado
maturity. J. Amer. Soc. Hort. Sci. 108:395-397.
Lobos, G. A., J. B. Retamales, J. F. Hancock, J. A. Flore, S. Romero-Bravo, and A. del Pozo. 2013. Productivity and fruit quality of Vaccinium corymbosum cv. Elliott under photo-selective shading nets. Scientia Horticulturae. 153:143-149.
Marlow, G. C. and W. H. Loescher. 1984. Watercore. Hort. Rev. 6:189-251.
Mitchell, F. G. 1992. Postahrvest handling system: temperature zone tree fruits (pome
fruits and stone fruits). In: Kader, A.A.(Technical Editor). Postharvest technology of horticultural crops. 2nd ed. Univ. of Calif., Div. of Agric. & Nat. Resources, Publication#3311. pp.215-221.
Mitcham, E. J. and F. G. Mitchell. 2002. Postharvest handling systems: Pome fruits. p.333-344, In: A. A. Kader. (Technical Editor) Postharvest Technology of Horticultural Crops. 3rd ed. Univ. of Calif., of Agric. & Nat. Resources, Publication#3311.
Murray, X. J., D. M. Holcroft, N. C. Cook, and S. J. E. Wand. 2005. Postharvest quality of ‘Laetitia’ and ‘Songold’ (Prunus salicina Lindell) plums as affected by preharvest shading treatments. Postharvest Biol.Technol. 37:81-92.
Opara, L. U. 2000. Fruit growth measurement and analysis. Hort. Rev. 24:373-419.
Sakuma, F., T. Kazuo, U. Takashi and H. Hironari. 1996. Effect of shade on the
occurrence of watercore in Japanese pear (Pyrus pyrifolia Nakai cv. Hosui). (In Japanese, English summary). Bull. Hort. Res. Inst. 4:7-9.
Sakuma, F., S. Katagiri, K. Tahira, T. Umeya and H. Hiyama. 1998. Effects of
defoliation and fruit thinning on occurrence of watercore fruit in Japanese pear (Pyrus pyrifolia Nakai) ‘Hosui’. (In Japanese, English summary). J. Japan Soc. Hort. Sci. 67(3):381-385.
Woolf, A. B., and I. B. Ferguson. 2000. Postharvest responses to high fruit
temperatures in the field. Postharvest Biol.Technol. 21:7-20.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔