跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃品翔
研究生(外文):Ping-Hsiang Huang
論文名稱:階層式相位關聯法為基礎之立體影像深度估算技術
論文名稱(外文):Stereo Images Depth Estimation Technique Based on Hierarchical Phase Correlation
指導教授:陳偉銘陳偉銘引用關係
指導教授(外文):Wei-Ming Chen
口試委員:陳偉銘黃德成沈偉誌康立威
口試委員(外文):Wei-Ming ChenDer-Chen HuangWei-Chih ShenLi-Wei Kang
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:47
中文關鍵詞:視差圖深度圖階層式相位關聯法
外文關鍵詞:disparity mapdepth mapHierarchical phase correlation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:569
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
  近年來三維立體視覺的設備與內容更易取得及價格也更低廉,且三維追蹤技術更加進步,傳統上是使用彩色影像進行物體的追蹤,而近年來為求能夠即時追蹤,則是利用紅外線反射的原理來偵測深度圖,並利用此三維關係進行物體追蹤,例如微軟Kinect、華碩Xtion,都是使用此技術,但此技術缺點為因是使用紅外線反射的原理來偵測,因此無法穿透玻璃而無法將設備置於玻璃後面,並且也無法偵測反光物體的深度,為了解決此問題,本論文回歸使用影像處理的方式進行,本論文提出透過phase correlation演算方法,使用立體攝影機進行左、右眼影像的拍攝,再進行後續的深度估算,並經由硬體配合即可逼近即時運算的效果。
本論文為使能在短時間內快速取得可用的深度圖,因此將不進行傳統的全域的方法來估算,而是提出階層式相位關聯法來進行深度偵測,以往單一大小視窗的深度估算,常因其視窗內紋理過於平滑或搜尋範圍內紋理重複造成估計錯誤,本論文提出依據紋理的特性,來決定視窗的大小,藉此有效的減少計算成本。除此之外,因相位關聯法有很好的強健性,可以有效提高視差估算,並且此技術可以配合硬體來降低計算所需的時間。最後根據實驗結果得知,本論文所提出的演算方法可以快速且有效地從左、右眼影像進行深度的估算,提供互動系統使用。

In recent years, 3D vision equipment and content are easier to obtain and getting cheaper price. 3D tracking technology is more progress because of technological breakthroughs. Traditionally, 3D object-tracking is the use of image processing methods. However, these methods are more time consuming. Based on time considerations, a new depth sensor uses the principle of infrared reflection to make fast object-tracking. Unfortunately, it cannot be detected correctly when the sensor behind the glass or try to detect a reflective objects. In order to overcome those problems, this paper presents a fast phase correlation based disparity estimation technique. A hierarchical scheme is proposed to improve the speed and accuracy for the image depth estimation. Noting the problem that local phase correlation based disparity estimation may fail in some image areas either featureless or with significant similar texture between an image pair. A multi-size image pair based disparity estimation called hierarchical disparity estimation, is design to improve the unreliable process around these areas. Moreover an pixel-square integral image is employed to speed up the computing time of variance estimate, which is used for deciding the size of image pairs, from O(n2) to O(1).From the result of our experiments, the proposed algorithm achieved a faster and more accurate disparity estimation and produce a efficiently image depth map for the interactive system.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 導論 1
1.1 研究動機與目的 1
1.2 論文架構 3
第二章 文獻探討 4
2.1 立體影像顯示設備與原理 4
2.1.1 戴眼鏡式3D立體原理介紹 5
2.1.2 不戴眼鏡式3D立體原理介紹 7
2.1.3 小結 9
2.2 立體影像深度圖生成 10
2.2.1 立體影像深度取得與格式 10
2.2.2 消失點深度估計法 11
2.2.3 區域清晰度估計法 11
2.2.4 運動恢復結構 12
2.2.5 動態規畫法 14
2.2.6 基於圖割的立體匹配演算法 15
2.2.7 基於協同優化的立體匹配演算法 16
2.2.8 小結 17
2.3 相位關聯法 18
2.3.1 原理 18
2.3.2 以離散餘弦為基礎的相位關聯法 19
2.3.3 相位關聯法的限制 20
2.3.4 小結 21
2.4 積分影像 22
2.4.1 積分影像的建置 22
2.4.2 積分影像的使用 22
第三章 研究方法 24
3.1 立體影像 25
3.2 參數前處理 26
3.3 紋理分析與分割 26
3.4 階層式相位關聯法 30
3.5 優化 32
3.6 深度圖轉換 33
3.7 快速視差估算與目標區域擷取 34
3.8 目標位移及深度估算 35
3.9 目標移動偵測 35
第四章 實驗結果 36
4.1 預估視差圖 37
4.2 計算時間分析 41
4.3 即時目標追蹤 42
第五章 結論與未來展望 43
參考文獻 45

[1]Zhang L., Wa James Tam, "Stereoscopic image generation based on depth images for 3D TV," Broadcasting, IEEE Transactions on , vol.51, no.2, pp.191,199, June 2005
[2]Fehn C., Pastoor R.S, "Interactive 3-DTV-Concepts and Key Technologies," Proceedings of the IEEE , vol.94, no.3, pp.524,538, March 2006
[3]Hee-Dong Kim, Ji-Won Lee, Tae-Woo Oh, Heung-Kyu Lee,"Robust DT-CWT Watermarking for DIBR 3D Images," Broadcasting, IEEE Transactions on , vol.58, no.4, pp.533,543, Dec. 2012
[4]劉楷哲、吳其霖、黃偉豪、陳信榮、李錕、羅豐祥,“基於3D顯示器格式之即時3D內容合成技術”,影像與識別, Vol. 16 No. 2,2010
[5]Andrew Jones, Ian McDowall, Hideshi Yamada, Mark Bolas, and Paul Debevec.,“Rendering for an interactive 360° light field display”, ACM Trans. Graph. 26, 3, Article 40,2007
[6]Liang Zhang; Tam, W.J.; , "Stereoscopic image generation based on depth images for 3D TV," Broadcasting, IEEE Transactions on , vol.51, no.2, pp. 191- 199, June 2005
[7]Fang-Hsuan Cheng,Jhih-Ciang Yang, “Depth Estimation from Single Image Based On Vanishing Point ”, Journal of Information Technology and Applications, Vol. 1 No. 3 , pp. 229-235,December, 2006
[8]H. Murata, X Mori, S. Yamashita, A. Maenaka , S. Okada, K. Oyamada , S. Kishimoto , "A real-time 2-D to 3-D image conversion technique using computed image depth", SID Symposium Digest of Technical Papers,1998
[9]賴文能、陳韋志,“淺談2D至3D視訊轉換技術”, 影像與識別, Vol. 16 No. 2,2010
[10]Ping Li, Rene Klein Gunnewiek, “On Creating Depth Maps from Monoscopic Video using Structure from Motion,” Proc. of IEEE Workshop on Content Generation and Coding for 3D-television, pp.508-515, 2006.
[11]Forstmann, S.; Kanou, Y.; Jun Ohya; Thuering, S.; Schmitt, A. "Real-Time Stereo by using Dynamic Programming," Computer Vision and Pattern Recognition Workshop, 2004. CVPRW '04. Conference on , vol., no., pp.29,29, 27-02 June 2004
[12]Juan, O.; Boykov, Y., "Active Graph Cuts," Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on , vol.1, no., pp.1023,1029, 17-22 June 2006
[13]Malcolm, J.; Rathi, Y.; Tannenbaum, A., "A Graph Cut Approach to Image Segmentation in Tensor Space," Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on , vol., no., pp.1,8, 17-22 June 2007
[14]Boykov, Y.; Veksler, O.; Zabih, R., "Fast approximate energy minimization via graph cuts," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.23, no.11, pp.1222,1239, Nov 2001
[15]Wei-Ming Chen, Sheng-Hao Jhang, "Improving Graph Cuts algorithm to transform sequence of stereo image to depth map" ,Journal of Systems and Software, Volume 86, Issue 1, Pages 198–210, January 2013
[16]Zeng-Fu Wang; Zhi-Gang Zheng, "A region based stereo matching algorithm using cooperative optimization," Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on , vol., no., pp.1,8, 23-28 June 2008
[17]C. D. Kuglin and D. C. Hines, "the phase correlation image alignment method", IEEE Conf. on Cyber. and Soci. ,pp. 163-165,September 1975
[18]Min Li; Biswas, M.; Kumar, S.; Truong Nguyen, "DCT-based phase correlation motion estimation," Image Processing, 2004. ICIP '04. 2004 International Conference on , vol.1, no., pp.445,448 Vol. 1, 24-27 Oct. 2004
[19]Franklin C. Crow, “Summed-Area Tables for Texture Mapping", ACM SIGGRAPH Computer Graphics, Volume 18 Issue 3,pp.207-212,July 1984
[20]Paul Viola, Michael J. Jones, "Robust Real-Time Face Detection", International Journal of Computer Vision, Volume 57, Issue 2, pp 137-154,May 2004

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top