跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊志強
研究生(外文):Chih Chiang Yang
論文名稱:植基於FPGA全方位移動機器人之適應性模糊小腦 運動控制及避障應用
論文名稱(外文):FPGA-Based Adaptive Fuzzy CMAC Motion Control and Obstacle Avoidance Applications for Omnidirectional Mobile Robots
指導教授:吳德豐
指導教授(外文):Ter Feng Wu
口試委員:陳珍源蔡樸生黃旭志徐勝均吳德豐
口試委員(外文):Jen-Yang ChenPu-Sheng TsaiHsu-Chih HuangSendren Sheng-Dong XuTer-Feng Wu
口試日期:2014-07-21
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:小腦模式控制模糊邏輯適應性控制避障策略全方位移動機器人嵌入式系統
外文關鍵詞:Cerebellar Model Articulation Controller (CMAC)Fuzzy LogicAdaptive ControlObstacle AvoidanceEmbedded SystemsOmnidirectional Mobile Robot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
本文提出一個嵌入式適應性模糊小腦控制器於四輪全方位移動機器人運動控制達成點穩定、軌跡追蹤及避障應用。模糊集合結合小腦控制器,簡化複雜結構降低輸入維度,結合強健控制器設計發展適應律與控制律,線上調整所有的控制增益參數,藉由李亞普諾夫(Lyapunov)穩定性分析,證明閉迴路信號為有界及追蹤誤差能收斂,用以調適全方位移動機器人的不確定性追蹤控制問題。
全方位移動機器人幾何架構推導出運動學模型,結合適應性模糊小腦控制器和避障策略,透過嵌入式系統的晶片軟、硬體協同設計,植入到可程式化邏輯陣列(Field Programmable Gate Array, FPGA)晶片,完成一套全方位移動機器人運動控制系統,最後經由模擬及實驗結果驗證本文所提出方法的可行性。

This paper presents an embedded adaptive fuzzy cerebellar model articulation controller to reach a point of stability control, trajectory tracking and obstacle avoidance applications for a four wheeled omnidirectional mobile robot. Firstly, Cerebellar model articulation controller combines fuzzy sets, simplifying the complex structure to reduce the input dimension. Combined the robust controller design with development of adaptive law and control law, it can online adjust all the gain parameter. By Lyapunov stability analysis, verified both closed-loop signal bounded and tracking error can converge to adapt uncertainty of tracking control problem for omnidirectional mobile robot.
Next, the kinematics model is derived by geometric architecture of omnidirectional mobile robot. Combined with adaptive fuzzy cerebellar model articulation controller and obstacle avoidance strategies through embedded systems chip using software/hardware co-design, implanted into Field Programmable Gate Array chip to complete a omnidirectional mobile robot motion control system. Finally, verify the effectiveness of the proposed method through simulation and experimental results.

誌謝 I
摘要 II
Abstract III
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2研究背景與目的 3
1.3研究步驟 5
1.4文章架構 6
第二章 模糊小腦控制器設計 7
2.1前言 7
2.2小腦模式控制器 7
2.3小腦模式控制器設計 9
2.4模糊小腦模型控制器設計 12
第三章 適應性模糊小腦控制器應用於四輪全方位動機器人 20
3.1問題描述 20
3.2模糊小腦模式控制系統設計 22
3.3強健控制器設計 22
3.4適應性模糊小腦模式控制系統設計 24
3.5四輪全方位移動機器人運動學模型 27
3.5.1運動學模型 28
3.5.2直線路徑軌跡追蹤模擬分析 30
3.5.3 圓形軌跡追蹤模擬分析 32
第四章 軟硬體設備與系統架構 35
4.1全方位移動機器人基本架構 35
4.1.1全方位輪 36
4.1.2 直流伺服馬達 37
4.1.3 馬達驅動器HB-25 38
4.1.4 紅外線感測器 40
4.1.5 FPGA實驗套件 41
4.2全方位移動機器人系統 44
4.2.1 軟體介紹 44
4.2.2 控制部份 47
4.2.3 回授部份 49
4.2.4 嵌入式處理器 56
第五章 避障策略 62
5.1避障策略目的 62
5.2機器人的控制策略概述 63
5.3避障策略設計 63
5.3.1避障概念 63
5.3.2 避障流程 64
第六章 實驗結果與結論 68
6.1實驗內容介紹 68
6.1.1 點對點位置追蹤實驗結果 68
6.1.2 直線路徑之軌跡追蹤實驗結果 70
6.1.3 圓形軌跡之追蹤實驗結果 72
6.1.4 軌跡追蹤之避障實驗結果 75
第七章 結論與未來展望 78
7.1結論 78
7.2未來展望 78
參考文獻 79

[1]陳昭浤、劉盈助、許偉中,Airiti Press Inc.,“機器人介面與控制設計實務”。
[2]機器人世界情報網,http://www.robotworld.org.tw/index.htm?pid=24
[3]機器人世界情報網,http://www.robotworld.org.tw/index.htm?pid=8&News_ID=340
[4]F. G. Pin and S. M. Killough, “A new family of Omni-directional and holonomic wheeled platforms for mobile robots”, IEEE Trans. on Robotics and Automation, vol. 10, pp.480-489, 1994.
[5]M. J. Jung, H. S. Kim, S. Kim and J. H. Kim,“Omnidirectional mobile base OK-II,” Proceeding of the 2000 IEEE International Conference on Robotics and Automation, pp. 3449-3454, San Francisco, April 2000.
[6]K. Watanabe, Y. Shiraishi, S. Tzafestas, J. Tang and T. Fukuda, “Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots,” Journal of Intelligent and Robotic Systems, vol. 22, pp. 315-330, 1998.
[7]H. C. Huang and C. C. Tsai, “FPGA implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1604-1616, 2009.
[8]M. J. Jung, H. S. Kim, S. Kim and J. H. Kim,“Omnidirectional mobile base OK-II,” Proceeding of the 2000 IEEE International Conference on Robotics and Automation, pp. 3449-3454, San Francisco, April 2000.
[9]T. W. Manikas, K. Ashenayi and R. L. Wainwright, “Genetic algorithms for autonomous robot navigation,” IEEE Instrumentation & Measurement Magazine, vol. 10, no. 6, pp. 26-31, December 2007.
[10]I. K. Jung, K. B. Hong, S. K. Hong and S. C. Hong, “Path Planning of mobile robot using neural network,” Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 3, pp. 979-983, Slovenia 1999.
[11]廖名揚,“應用即時影像及模糊PID控制自走車於無線攔截任務”,國立成功大學航空太空工程研究所碩士論文,2007。
[12]J. J. E. Slotine and W. Li, “Applied Nonlinear Control”, Prentice-Hall, 1991
[13]C. Cao, X. Guo and Y. Liu, “Research on ant colony neural network PID controller and application”, Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’ 07), pp. 253-258, 2007.
[14]P. Wang and D. P. Kwok, “Optimal design of PID process controllers based on genetic algorithms”, Control Engineering Practice, vol. 2, no. 4, pp. 641-648, 1994.
[15]S. Tzafestas and N. P. Papanikolopoulos, “Incremetal fuzzy expert PID control”, IEEE Trans. on Industrial Electronics, vol. 37, no. 5, pp. 365-371, 1990.
[16]Y. T. Hsiao, C. L. Chuang and C. C. Chien, “Ant colony optimization for designing of PID controllers”, Proceedings of the IEEE lntemational Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, 2004.
[17]S. E. Selvan, S. Subramanian and S. T. Solomon, “Novel technique for PID tuning by particle swarm optimization”, Proceedings of the 7th Annual Swarm Users/Researchers Conference (SwarmFest’ 03), 2003.
[18]L. N. De Castro and F. J. Von Zuben, “The Clonal Selection Algorithm with Engineering Application”, Proceedings of The Genetic and Evolutionary Computation Conference, vol. 1, pp. 36-37, 2000.
[19]K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Netw.,vol. 1, no. 1, pp. 4–27, Mar. 1990.
[20]J. R. Noriega and H. Wang, “A direct adaptive neural-network control for unknown nonlinear systems and its application,” IEEE Trans. Neural Netw., vol. 9, no. 1, pp. 27–34, Jan. 1998.
[21]C. M. Lin and C. F. Hsu, “Neural network hybrid control for antilock braking systems,” IEEE Trans. Neural Netw., vol. 14, no. 2, pp.351–359, Mar. 2003.
[22]C. M. Lin and C. F. Hsu, “Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings,” IEEE Trans. Fuzzy Syst. vol. 12, no. 5, pp. 733–742, Oct. 2004.
[23]J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, J. Dyn. Syst. Meas. Contr., 1975, 97, pp. 220-227
[24]J. S. Albus, “Data Storage in the Cerebellar Model Articulation Controller (CMAC)”, Trans. ASME, J. Dyn. Syst. Meas. Contr., 1975, 97, pp. 228-233
[25]王文俊,全華圖書股份有限公司,“認識Fuzzy第二版”
[26]L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes”, IEEE Trans. on Systems, Man, and Cybernetics, Vol. SMC-3, pp. 28-44, 1973.
[27]L. A. Zadeh, “Fuzzy Logic = Computing with Words”, IEEE Trans. on Fuzzy Systems, Vol. 4, No. 4, pp. 103-111, May 1996.
[28]Kornylak,http://kornylak.com/wheels/transwheel.html
[28]廖裕評、陸瑞強、友晶科技研發團隊,友晶科技,“邏輯電路設計 DE2-115 實戰寶典”

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊