跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/02 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍梓軒
研究生(外文):Tzu-Hsuan Lan
論文名稱:連續式微生物燃料電池幾何流道與重力場效應之數值分析
論文名稱(外文):Numerical Simulation Applied to Investigate the Effects of Flow Slab and Gravitational Field in a Continuous Type of Microbial Fuel Cell
指導教授:王金燦王金燦引用關係
指導教授(外文):Chin- Tsan Wang
口試委員:王金燦楊永欽王丞浩王宜達
口試委員(外文):Chin- Tsan WangYung-Chin YangChen-Hao WangYi-Ta Wang
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:機械與機電工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:數值分析微生物燃料電池幾何流道重力場效應電性效率極化
外文關鍵詞:Numerical simulationMicrobial fuel cell (MFC)Type of flow channelEffects of gravityElectrical efficiencyPolarization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:580
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
微生物燃料電池(Microbial fuel cell, MFC)大多透過實驗操作,不僅耗時且實驗費用高,因此本研究擬應用數值模擬法於連續式微生物燃料電池系統中進行幾何流道與重力場對系統性能影響之探討;首先對MFC系統進行模擬分析透過設定陽極交換電流密度,並擬合分析系統內三種極化的關係,研究顯示於交換電流密度值為8000mA/m3時與B. E. Logan[1]實驗有相近的極化曲線,驗證模擬法於微生物燃料電池應用的可行性;另研究透過三種不同流道場設計(蜿蜒型、蜿蜒漸縮型與仿生型),探討幾何流道對系統性能 (電性、壓阻、基質消耗率) 之影響,研究發現以仿生型設計下有最大極限電流,其電性效率分別為蜿蜒型與蜿蜒漸縮型流道的3.28倍、44.5倍;另,仿生型流道效度為3.21,相較於蜿蜒漸縮型流道效度為0.072,更適合用於系統之流道設計,在基質消耗率上,仿生型流道比蜿蜒型、蜿蜒漸縮型流道多;最後在重力場效應影響的數值模擬中,發現在0.125G及Re=41.3之條件下對微生物燃料電池中電性影響最大,相關研究將有助於對微生物燃料電池在幾何流道、重力場效應影響之探討提供資訊。
Microbial Fuel Cells (MFCs) are not only time consuming but also costly to undergo experimentation with. The numerical simulation improves time consuming and costly. This study adopts a numerical simulation analysis method to investigate the effects of gravity on, and different types of flow channel applied to, a continuous microbial fuel cell. The first is a numerical simulation by setting the anode exchange current density and fitting analysis polarization. The results show that 8000A/m3 of the exchange current density for the simulation setting of the MFC model, which has a similar electricity generation to the experimental results of B. E. Logan (2006). In order to investigate the electrical performance, validity, piezoresistive and substrate consumption of MFCs, three types of flow channel, (serpentine, serpentine taper and biometric), were designed and applied to the anode/cathode channels of MFCs, The simulation analysis showed that the biometric type has a maximum limiting current density in its electrical performance, with the electrical efficiency of the biometric type being better than serpentine type by 3.28 times and also better than the serpentine taper type by 44.5 times. The validity of the biometric type channel was 3.21, which was more befitting to apply to the MFC than the serpentine type channel (0.072). Regarding substrate consumption, the biometric type performed better than both the serpentine type and serpentine taper type. This study uses different effects of gravity with geometric flow channels (serpentine type, serpentine taper type and biometric flow type) in microbial fuel cells. The results show that there was a better electrical performance at 0.125G of gravity at a Reynolds number of 41.3 in the MFCs for the three types of flow channels. This study will provide information from the different flow channels and show the effects of gravity in the numerical simulation of microbial fuel cells.
目錄:
符號總覽: IX
第一章緒論 1
1.1 微生物燃料電池近期發展 1
1.2 幾何流道 3
1.3 重力場效應 4
第二章 文獻回顧 6
2.1 數值分析 6
2.1.1 燃料電池 6
2.1.2 微生物燃料電池 7
2.2 幾何流道 8
2.2.1蜿蜒型 8
2.2.2 蜿蜒漸縮型 9
2.2.3 仿生型 10
2.3 重力場效應 11
2.4 研究目的 11
第三章 連續式微生物燃料電池物理模型設定 13
3.1 理論假設 13
3.2 物理模型設定 15
3.3 統御方程式 20
3.4 模擬計算程序 24
第四章 結果與討論 25
4.1連續式微生物燃料電池之數值分析 25
4.1.1 陽極交換電流密度的確定及應用可行性探討 25
4.1.2 活化、歐姆、濃度極化等三種極化之影響分析 27
4.2 連續式微生物燃料電池加入幾何流道設計之影響 30
4.2.1 幾何流道對電性之影響 30
4.2.2 不同幾何流道下對微生物燃料電池系統效率影響分析 32
4.2.3 陰/陽極基質於幾何流道之反應效率 34
4.3 重力場效應於連續式微生物燃料電池影響 36
4.3.1 重力場效應對系統電性影響: 36
第五章結論 40
第六章未來工作 42
第七章參考文獻 45
簡歷 53

[1] Min B, & Logan, B. E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental science & technology. 2004;38:5809-14.
[2] Smalley RE. Future global energy prosperity: the terawatt challenge. Mrs Bulletin. 2005;30: 412-7.
[3] Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in biotechnology. 2005;23:291-8.
[4] Pant D, Van Bogaert G, Diels L, Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010;101:1533-43.
[5] Picioreanu C, Head IM, Katuri KP, van Loosdrecht MC, Scott K. A computational model for biofilm-based microbial fuel cells. Water research. 2007;41:2921-40.
[6] Zeng Y, Choo YF, Kim B-H, Wu P. Modelling and simulation of two-chamber microbial fuel cell. Journal of Power Sources. 2010;195:79-89.
[7] Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. . Nature Reviews Microbiology. 2009;7:375-81.
[8] Lovley DR. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environmental microbiology reports. 2011;3:27-35.
[9] Zhou M, Chi M, Luo J, He H, Jin T. An overview of electrode materials in microbial fuel cells. Journal of Power Sources. 2011;196:4427-35.
[10] Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environmental science & technology. 2013;47:2085-91.
[11] Bedekar AS, Feng, J. J., Lim, K., Krishnamoorthy, S., Palmore, G. T. R., & Sundaram, S. Computational analysis of microfluidic biofuel cells. Austin, TX, United States. 2004.
[12] Logan B, Cheng, S., Watson, V., & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental science & technology. 2007;41:3341-6.
[13] Logan BE, Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., ... & Rabaey, K. . Microbial fuel cells: methodology and technology. Environmental science & technology. 2006;40:5181-92.
[14] Nguyen N-T, Wu Z. Micromixers—a review. Journal of Micromechanics and Microengineering. 2005;15:R1-R16.
[15] Li X, Sabir I. Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy. 2005;30:359-71.
[16] Wang HY, Bernarda A, Huang CY, Lee DJ, Chang JS. Micro-sized microbial fuel cell: a mini-review. Bioresour Technol. 2011;102:235-43.
[17] Ziegenbalg D, Kompter C, Schönfeld F, Kralisch D. Evaluation of different micromixers by CFD simulations for the anionic polymerisation of styrene. Green Processing and Synthesis. 2012;1.
[18] Suzuki H, & Ho, C. M. A magnetic force driven chaotic micro-mixer. The Fifteenth IEEE International Conference on. 2002;IEEE:40-3.
[19] Purevdorj-Gage B, Sheehan KB, Hyman LE. Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Applied and environmental microbiology. 2006;72:4569-75.
[20] Benoit MR, Klaus DM. Microgravity, bacteria, and the influence of motility. Advances in Space Research. 2007;39:1225-32.
[21] Strašák L, Vetterl, V., & Šmarda, J. Effects of low-frequency magnetic fields on bacteria< i> Escherichia coli. Bioelectrochemistry,. 2002;55:161-4.
[22] Baker PW, Meyer, M. L., & Leff, L. G. . Escherichia coli growth under modeled reduced gravity. Microgravity-Science and Technology,. 2004;15:39-44.
[23] Benoit MR, & Klaus, D. M. . Microgravity, bacteria, and the influence of motility. Advances in Space Research. 2007;39:1225-32.
[24] Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Höner zu Bentrup K, et al. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. Journal of Microbiological Methods. 2003;54:1-11.
[25] Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu Reddy S, Shivaji S. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PloS one. 2013;8:e57860.
[26] Peighambardoust SJ, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy. 2010;35:9349-84.
[27] Siegel C. Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy. 2008;33:1331-52.
[28] Mazumder S, Cole JV. Rigorous 3-D Mathematical Modeling of PEM Fuel Cells. Journal of The Electrochemical Society. 2003;150:A1503.
[29] Picioreanu C, Katuri KP, Loosdrecht MCM, Head IM, Scott K. Modelling microbial fuel cells with suspended cells and added electron transfer mediator. Journal of Applied Electrochemistry. 2009;40:151-62.
[30] A.S. Bedekar JJF, K. Lim, S. Krishnamoorthy, G.T.R. Palmore and S. Sundaram. COMPUTATIONAL ANALYSIS OF MICROFLUIDIC BIOFUEL CELLS. 2004.
[31] She Q, Jin X, Tang CY. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. Journal of Membrane Science. 2012;401-402:262-73.
[32] Tsai RT, Wu CY. An efficient micromixer based on multidirectional vortices due to baffles and channel curvature. Biomicrofluidics. 2011;5:14103.
[33] Wong CW, Zhao TS, Ye Q, Liu JG. Experimental investigations of the anode flow field of a micro direct methanol fuel cell. Journal of Power Sources. 2006;155:291-6.
[34] Mancusi E, Fontana É, Ulson de Souza AA, Guelli Ulson de Souza SMA. Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design. International Journal of Hydrogen Energy. 2014;39:2261-73.
[35] Inoue S, Parra EA, Higa A, Jiang Y, Wang P, Buie CR, et al. Structural optimization of contact electrodes in microbial fuel cells for current density enhancements. Sensors and Actuators A: Physical. 2012;177:30-6.
[36] Wang CT, Hu YC, Hu TY. Biophysical micromixer. Sensors. 2009;9:5379-89.
[37] Seong GH, & Crooks, R. M. . Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. Journal of the American Chemical Society. 2002;124:13360-1.
[38] Baker PW, & Leff, L. . The effect of simulated microgravity on bacteria from the Mir space station. Microgravity-Science and Technology. 2004;15:35-41.
[39] Hammond TG, and J. M. Hammond. Optimized suspension culture: the rotating-wall vessel 281.1 (2001): . American Journal of Physiology-Renal Physiology. 2001;281:F12-F25.
[40] 黃鎮江. 燃料電池: 滄海書局; 2008.
[41] Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, et al. Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential. Electrochimica Acta. 2009;54:1109-14.
[42] Manohar AK, Bretschger O, Nealson KH, Mansfeld F. The polarization behavior of the anode in a microbial fuel cell. Electrochimica Acta. 2008;53:3508-13.
[43] Zhao F, Slade, R. C., & Varcoe, J. R. . Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews. 2009;38:1926-39.
[44] Ge J, Isgor OB. Effects of Tafel slope, exchange current density and electrode potential on the corrosion of steel in concrete. Materials and Corrosion. 2007;58:573-82.
[45] Wang CT, Chang, C. T., Hu, T. Y., & Leu, T. S. Unsteady Flow Mixing Effect in Bionic Micro-Flow Channel. International Journal of Chemical Reactor Engineering. 2011;9.
[46] Springer TE, Zawodzinski, T. A., & Gottesfeld, S. . Polymer electrolyte fuel cell model. Journal of the Electrochemical Society. 1991;138:2334-42.
[47] Mazumder S, Cole JV. Rigorous 3-D Mathematical Modeling of PEM Fuel Cells. Journal of The Electrochemical Society. 2003;150:A1510.
[48] Peng R-G, Chung C-C, Chen C-H. Experimental and numerical studies of micro PEM fuel cell. Acta Mechanica Sinica. 2011;27:627-35.
[49] 呂吉祥. 質子交換膜燃料電池操作參數對電池性能影響之模擬分析. 清華大學工程與系統學系碩士論文. 2005.
[50] ESI. CFD-ACE Modules Manual. ESI CFD. 2013.
[51] 邱永浩. 質子交換膜燃料電池在不同流道之性能比較與分析. 臺灣大學機械工程學研究所學位論文. 2006:1-106.
[52] Peneder M. The problem of private under-investment in innovation: A policy mind map. Technovation. 2008;28:518-30.
[53] Wen Q, Wu Y, Cao D, Zhao L, Sun Q. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour Technol. 2009;100:4171-5.
[54] Thornley JHM. Energy, respiration, and growth in plants. Annals of Botany. 1971;35:721-8.
[55] Rabaey K, Lissens, G., Siciliano, S. D., & Verstraete, W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology letters. 2003;25:1531-5.
[56] Dutta S, Shimpalee, S., & Van Zee, J. W. . Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. International Journal of Heat and Mass Transfer. 2001;44:2029-42.
[57] Di Lorenzo M, Curtis TP, Head IM, Scott K. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water research. 2009;43:3145-54.
[58] Kjeang E, Michel, R., Harrington, D. A., Djilali, N., & Sinton, D. A microfluidic fuel cell with flow-through porous electrodes. Journal of the American Chemical Society. 20008;130:4000-6.
[59] ESI. Biosensor. CFD-ACE tutorial. 2013:24.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top