跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/26 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭芳汝
研究生(外文):Kuo, Fang-Ju
論文名稱:熱電漿重組二氧化碳與生質焦油-以甲苯模擬為例
論文名稱(外文):Thermal Plasma Reforming of CO2 and Biomass Tar – Toluene as a Model Compound
指導教授:謝哲隆
指導教授(外文):Shie, Je-Lueng
口試委員:張慶源李元陞吳耿東陳奕宏
口試委員(外文):Chang, Ching-YuanLi, Yuan-ShenWu, Keng-TungChen,Yi-Hung
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:204
中文關鍵詞:重組熱電漿甲苯二氧化碳生質焦油合成氣
外文關鍵詞:reformingthermal plasmatoluenecarbon dioxidebiomass tarsyngas
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:2
合成氣(CO+H2)為一氧化碳及氫氣之混合氣體,是一種化學合成的重要中間產物,對環境來說是一種乾淨的燃料。合成氣可從煤礦、石油、天然氣、生質物甚至是有機廢棄物製造產生。本研究探討將氣化或裂解生質物後所產生的焦油(以甲苯(C7H8)做為模型產物)與二氧化碳(CO2)進行熱電漿重組以產製合成氣。重組技術對於減少石油資源的使用量有迅速發展的趨勢,且強調於減緩溫室氣體之環境狀況。而電漿技術應用於重組焦油被認為是一個有潛力的技術,其中,焦油結合二氧化碳重組變得更有吸引力是因為其不僅減少了焦油的困擾,同時還降低了二氧化碳的濃度。在本研究中使用熱電漿反應器(電漿火炬)重組甲苯以及二氧化碳,操作條件探討在不同甲苯進流濃度(1639- 2670 ppmv)、C7H8與CO2比例(1/0、1/13、1/20、1/37)、反應溫度(423、473、573、623K)、蒸汽流率(0.75、1.5、3 mL/min)及反應時間(0、5、10、20、30、40 min)下對C7H8與CO2轉換率(conversion)、CO與H2選擇率(selectivity)和CO及H2產氣濃度之影響。
主要氣體產物為CO及H2,由GC/TCD來分析,在相同時間下,副產物則由GC/MS分析。本研究第一部份為先期試驗,在N2 = 7 L/min進流下,其影響結果可得知,甲苯最高轉換率為88.8%。將N2 由7 L/min升至9 L/min時,C7H8轉換率可由68.3%大幅升至92.9%。主要原因可能因N2流量高時,電漿甲苯混合較均勻,同時初始濃度較低導致。
第二部份不同C7H8/CO2配比結果顯示,固定CO2進流率下,反應溫度越高其轉換率、選擇率以及產氣濃度皆有顯著上升趨勢。在C7H8/CO2配比為1/58時有最佳的效果。C7H8及CO2最高轉換率分別為95.5%及77.9%;CO及H2最高選擇率分別為135.7%及84.4%;CO及H2產氣濃度為42,102 ppmv及18,464 ppmv。因此可知,乾式重組下最佳操作條件為673K及C7H8/CO2 = 1/58。
第三部分添加蒸汽後,其結果顯示蒸汽進流率越高,C7H8轉換率及H2選擇率也大幅提升,H2產氣濃度提高了約2倍,但反觀CO2轉換率及CO產氣濃度卻沒有明顯提升,而CO選擇率則稍微下降。C7H8轉換率及H2選擇率最高分別為98.2 %以及263.7%。如與無蒸汽下相比,C7H8轉換率從95.5%升至98.4%,更與完全無CO2及H2O下相比,其C7H8轉換率由91.4%大幅升至98.4%。因此添加水氣後,水發生裂解並參與重組反應。
H2產氣濃度超過100.0%及濃度大幅增加的原因,推測發生蒸汽重組反應(C7H8 + 14H2O → 7CO2 + 18H2)及碳氣化反應(C + H2O → CO + H2)。另外推測因添加蒸汽同時會與產氣的CO發生反應(CO + H2O → CO2 + H2),使得CO2濃度並沒有明顯下降。鑒於此結果本研究之最適化條件為673K、C7H8/CO2 = 1/58及H2O flow rate = 3 mL/min。
在固體產物分析部分,元素及熱值分析結果在673K、C7H8/CO2 =1/58下產出之碳渣有最小C% (25.1%)與最小平均熱值(5234 kcal/kg),可推測高溫下有利於乾式重組反應的進行並協助甲苯碳鏈破壞成CO及H2 ,亦可驗證出碳渣的C%愈少其熱值愈低,添加CO2後不僅可增加轉換率,更可使甲苯乾式重組反應進行得更徹底。從SEM圖可得知,在不同溫度及添加不同濃度的氣化劑時,其對產出的碳渣並無太大的影響,均呈現接近奈米等級圓球狀。但高溫(673K)、高CO2進流(240 mL/min)及H2O下可促進重組反應的完全並解決積碳問題。
整體研究結果顯示,進一步再添加蒸汽提供更多H及O源,除了大幅提高H2產出濃度外,更可去除反應後所產生的積碳及沉灰問題。因此本研究提出之電漿乾/濕式重組焦油技術可解決傳統熱處理所衍生的問題。

Synthesis gas (or “syngas”), a mixture of carbon monoxide and hydrogen, is an important intermediate for various synthesizing chemicals and environmentally clean fuels. Synthesis gas can be produced from coal, petroleum coke, natural gas, biomass and even from organic wastes. Thermal plasma reforming of CO2 and toluene as a model compound of gasification or pyrolysis tar to produce syngas was investigated in this study. Reforming is of rapid growing interest for reasons of the continuous decrease of petroleum resources and the emphasis on the environmental situation for greenhouse gas mitigation. Plasma technology is considered to be one of potential ways for tar (taking toluene (C7H8) as model material) and CO2 reforming. Tar and CO2 reforming becomes more attractive because it not only lessens tar consumption but also makes use of carbon dioxide. In this study, a thermal plasma reactor (thermal plasma) was used for the reforming of toluene and CO2 at the different ratios (1/0, 1/13, 1/20, 1/37) of C7H8/CO2, initial concentrations of toluene (1639-2670 ppmv), temperatures (423, 473, 573, 673 K), H2O flow rates (0.75, 1.5, 3 mL/min) and reaction times (0, 5, 10, 20, 30, 40). The major yields of CO and H2 were also addressed and analyzed using GC-TCD, at the same time, the types of by-product were analyzed using GC/MS. In the first tested experiment, the highest toluene conversion was 88.8% when the N2 flow rate at 7 L/min. Next, toluene conversion increased from 68.3% to 92.9% widely when the N2 flow rate of 7 L/min rose to 9 L/min. The main reason may be due to the N2 at higher flow rate, and the plasma with toluene was well mixed while let to low initial concentration of toluene.
In the second part, the different ratio of C7H8/CO2 while at constant flow of CO2 showed that the temperature increased, the conversion, selectivity and concentration of products rose significantly. The result showed that the C7H8/CO2 ratio of 1/58 appearred the highest effect on the indexes. The highest conversions of C7H8 and CO2 were 95.5% and 77.9%, respectively. The selectivities of CO and H2 were 135.7% and 84.4%; meanwhile, the CO and H2 concentrations were 42,102 and 18,464 ppmv, respectively. From the result, the temperature of 673K and the C7H8/CO2 ratio of 1/58 were the optimum operational conditions in dry reforming situation.
After the steam injecting coupled with the C7H8 and CO2 flows at the advanced steps, the results showed that at the increase of the steam flow rate, the C7H8 conversion and H2 selectivity also increased widely, at the same time, the H2 concentration increased more than two times. However, on the contrary, the CO2 conversion and CO concentration did not increase obviously, while CO selectivity also decreased. At this condition, the highest conversion of C7H8 and selectivity of H2 were 98.2% and 263.7%, respectively. As it was compared to the situation without steam input, C7H8 conversion increased from 95.5% to 98.4%, and then it was fuether compared to those without CO2 and steam flows, C7H8 conversion increased from 91.4% to 98.4% apperantly. Therefore, water spillted to participate the pyrolysis and gasification reactions obviously occurred after the addition of steam.
The reasons about the H2 concentration over 100% can be contributed to the reaction of steam reforming (C7H8 + 14H2O → 7CO2 + 18H2) and water-gas shift reaction (C + H2O → CO + H2). Besides, the injection of the steam will occurre to let the H2O to react with CO (CO + H2O → CO2 + H2), while it is responsible to the stability of CO2 concentration without decrease. In accordance with the result, the optimum operating parameters were 673K, C7H8/CO2 of 1/58 and H2O flow rate of 3 mL/min in this study.
In the solid products analyses, the results of the element and heating value analysis showed that the residue displaced the lowest C% (25.1%) and average heating value (5234 kcal/kg) was at the temperature of 673K and C7H8/CO2 molar ratio of 1/58. It appears that high temperature is beneficial to dry reforming and it also results in the broken of carbon bond of toluene and produces to the products of CO and H2. The evidence of the fewer C% make the lower heating value is addressed, as well as, the injection of steam not only increase the conversion of CO2 but also make the dry reforming of toluene completely. From the SEM photos, the residues were not affected obviously at different temperatures and agents of CO2, furthermore, the shape of residues displayed spherical types near nanometer scale. However, it is clear that high temperature (673K) and high CO2 flow rate (240 mL/min) with steam will over come the problem of corbon deposition.
In the conclusion, this study proves that steam input will provide more H and O, and it not only enhances the production of H2 but also removes the deposited corbon and ash from reaction. Therefore, this study presents that the technology of plasma dry/steam reforming of tar will solve the problems from the traditional thermal technology.

摘要........................................................I
ABSTRACT...................................................IV
目錄......................................................VII
圖目錄.....................................................XI
表目錄...................................................XVII
第一章 前言.................................................1
1.1 研究緣起................................................1
1.2 研究目的................................................5
第二章 文獻回顧.............................................6
2.1 生質能與生物精煉........................................6
2.1.1 生質能................................................6
2.1.2 生物精煉.............................................11
2.2 國內生質能源發展技術概況...............................14
2.2.1 固態廢棄物衍生燃料(RDF)..............................18
2.2.2 氫能製造技術.........................................20
2.2.3 生質能熱電系統技術...................................21
2.2.4 熱裂解(pyrolysis)技術................................23
2.2.5 氣化(gasification)技術...............................25
2.2.6 燃燒(combustion)技術.................................29
2.2.7 合成氣之應用.........................................31
2.2.7.1 生質物氣化合成氣製備生質原油(GTL)..................34
2.3熱處理技術與焦油之生成..................................36
2.3.1焦油來源與定義........................................36
2.3.2焦油組成及物化特性....................................41
2.4.3焦油分類..............................................43
2.3.4焦油的分析............................................47
2.3.5焦油模擬成分..........................................49
2.4 電漿...................................................51
2.4.1 電漿原理.............................................52
2.4.2 電漿種類.............................................54
2.4.3 轉化技術之反應機制...................................56
2.5重組技術發展現況........................................60
2.5.1電漿重組技術..........................................60
2.5.2 乾式重組技術.........................................62
2.5.3 濕式重組技術.........................................63
2.5.4觸媒重組技術..........................................65
第三章 研究方法............................................68
3.1 研究流程圖.............................................68
3.2 電漿火炬系統與操作.....................................70
3.2.1 電漿火炬系統.........................................70
3.2.2 電漿火炬示意圖.......................................74
3.2.3 實驗操作條件.........................................76
3.2.4 電漿熱裂解操作步驟...................................77
3.2.4.1電漿降解甲苯實驗步驟................................77
3.2.4.2電漿甲苯/CO2乾式重組實驗步驟........................77
3.2.4.3電漿甲苯蒸汽/CO2乾濕式重組實驗步驟..................78
3.3 氣體產物分析與計算.....................................79
3.3.1 氣相層析儀-熱導偵測器(GC-TCD)........................79
3.3.2氣相層析質譜儀-火焰離子偵測器(GC-MS)..................82
3.3.3廢氣分析儀............................................85
3.3.4 計算.................................................88
3.4 固體產物分析...........................................89
3.4.1 元素分析.............................................89
3.4.2 熱值分析(HHV)........................................90
3.4.3 掃描式電子顯微鏡分析.................................92
3.4.4比表面積測定分析......................................93
第四章 結果與討論..........................................94
4.1 電漿系統穩定性操作.....................................94
4.1.1 電漿重組穩定時間測試.................................94
4.2甲苯初始濃度及不同反應溫度對電漿重組之影響..............96
4.2.1 單獨甲苯於不同反應溫度下對電漿重組之影響.............96
4.3 不同配比下對甲苯電漿乾式重組之影響.....................98
4.3.1溫度為523K下不同配比對乾式重組之影響..................99
4.3.2溫度為573K下不同配比對電漿乾式重組之影響.............109
4.3.3溫度為673K下不同配比對電漿乾式重組之影響.............119
4.4反應溫度對固定進流配比下電漿乾式重組之影響.............129
4.4.1電漿降解甲苯(配比1/0)於不同反應溫度下之影響..........129
4.4.2固定配比為1/13下反應溫度對電漿乾式重組之影響.........134
4.4.3固定配比為1/20下反應溫度對電漿乾式重組之影響.........143
4.4.4固定配比為1/58下反應溫度對電漿乾式重組之影響.........152
4.5 固定CO2配比下蒸汽對電漿濕式重組之影響.................161
4.6電漿降解及乾式重組後碳渣特性分析.......................171
4.6.1 元素分析............................................171
4.6.2 熱值分析(HHV).......................................173
4.6.3掃描式電子顯微鏡分析.................................175
4.6.4比表面積分析.........................................176
4.7綜合討論...............................................180
第五章 結論與建議.........................................190
5.1 結論..................................................190
5.2 建議..................................................193
第六章 參考文獻...........................................194
附錄A.....................................................202
A.1調整N2流量對電漿乾式重組之影響.........................202
1.Alben, K., (1980) “Gas Chromatographic-Mass Spectrometric Analysis of Chlorination Effects on Commercial Coal-Tar Leachate”, Analysis Chemistry, 52, 1825-1828.
2.Anna, P., Sylwester, K., Wlodzimierz, B., (2006) “Effect of Operating Conditions on Tar and Gas Composition in High Temperature Air/Steam Gasification (HTAG) of Plastic Containing Waste”, Fuel Process Technology, 87, 223-233.
3.Aygun, F., Demirci, A., Ozcimder, M., (1996) “Liquid Chromatographic Method for the Determination of Benzo[a]pyrene in Filter Tar of Turkish Cigarettes”, Journal of Agricultural Food Chemistry, 44, 1488-1490.
4.Baker, E. G., Brown, M. D., Elliott, D. C., Mudge, L. K., (1988) “Characterization and Treatment of Tars from Biomass Gasifiers”, AIChE Summer National Meeting, 1–11.
5.Baumann, H., Bittner, D., Beiers, H.G., Klein, J., Juntgen, H., (1998) “Pyrolysis of coal in hydrogen and helium plasmas”, Fuel, 67(8), 1120-1123.
6.BBC News, (2008a) “EU rethinks biofuels guidelines”, available at http://news.bbc.co.uk/go/pr/fr/-/2/hi/europe/7186380.stm.
7.BBC News, (2008b) “UN warns on food price inflation”, available at http://news.bbc.co.uk/go/pr/fr/-/2/hi/in_depth/7281686.stm.
8.Bergman, P.C.A., Paasen, V.B., Boerrigter, H., (2002) “The Novel “OLGA” Technology for Complete Tar Removal from Biomass Producer Gas”, Pyrolysis and Gasification of Biomass and Waste, Expert Meeting, France.
9.Bridgwater, A. V. (1999) “Fast pyrolysis of biomass: a handbook,” Vol. 1, Chapter 1, p.1, CPL Press.
10.Chen, T., Liu, H., Shi, P., Chen, D., Song, L., He, H., Frost, R.L., (2013) “CO2 reforming of toluene as model compound of biomass tar on Ni/Palygorskite”, Fuel, 107, 699-705.
11.Chun, Y.N., Kim, S.C., Yoshikawa, K., (2012) “Removal characteristics of tar benzene using the externally oscillated plasma reformer”, Chemical Engineering and Processing: Process Intensification, 57-58, 65-74.
12.Demirbas, A., (2009) “Biorefineries: Current activities and future developments”, Energy Conversion and Management, 50, 2782-2801.
13.Directive of the European Parliament and of the Council, (2003) “The Promotion of the Use of Biofuels or Other Renewable Fuels for Transport”, Official Journal of the European Union, 42-46.
14.Directive of the European Parliament and of the Council, (2008) “The Promotion of the Use of energy from renewable sources”, presented by the Commission of the European Communities.
15.Elliott, D.C., (1988) “Relation of Reaction Time and Temperature to Chemical Composition of Pyrolysis Oils”, Pyrolysis Oils from Biomass, 376, 55-65.
16.Faravelli, T., Frassoldati, A., Migliavacca, G., Ranzi, E., (2010) “Detailed kinetic modeling of the thermal degradation of lignins”, Biomass Bioenerg, 34, 290–301.
17.Fitzpatrick, E.M., Jones, J.M., Pourkashanian, M., Ross, A.B., Williams, A., Bartle, K.D., (2008) “Mechanistic aspects of soot formation from the combustion of pine wood”, Energy Fuels, 22, 3771–3778.
18.Fitzpatrick, E.M., Bartle, K.D., Kubacki, M.L., Jones, J.M., Pourkashanian, M., Ross, A.B., Williamsa, A., Kubicab, K., (2009) “The mechanism of the formation of soot and other pollutants during the co-firing of coal and pine wood in a fixed bed combustor”, Fuel, 88, 2409–2417.
19.Fourcault, A., Marias, F., Michon, U., (2010) “Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch”, Biomass and Bioenergy, 34(9), 1363-1374.
20.Fulcheri, L., Schwob, Y., (1995) “From methane to hydrogen, carbon black and water”, Int. J. Hydrogen Energy, 20(3), 197-202.
21.Granada, E., Lopez-Gonzalez, L.M., Miguez, J,L., Moran, J., (2002) “Fuel lignocellulosic briquettes, die design and products study”, Renewable Energy, 27, 561-573.
22.Jess, A., (1996) “Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels”, Fuel, 75(12), 1441–1448.
23.Karellas, S., Karl, J., (2007) “Analysis of the Product Gas from Biomass Gasification by Means of Laser Spectroscopy”, Optics and Lasers in Engineering, 45, 935-946.
24.Kevin Attra Courtesy of Buck Scientific Inc., (2006) “Ultra-Sensitive Coal Tar Distillate Analysis by GC-PID”, Originally Published, available at http://www.environmental-expert.com.
25.Kogelschatz, U., (2004) “Atmospheric-pressure plasma technology”, Plasma Physics and Controlled Fusion, 46, B63-B75.
26.Kong, M., Yang, Q., Fei, J., Zheng, X., (2012) “Experimental study of Ni/MgO catalyst in carbon dioxide reforming of toluene, a model compound of tar from biomass gasification”, International Journal of Hydrogen Energy, 37(18), 13355-13364.
27.Kwant, K.W., (2002) “Status of gasification in countries participating in the IEA biomass gasification and gas net activity”, Novem, Utrecht, 1-118.
28.Ledesma, E.B., Marsh, N.D., Sandrowitz, A.K., Wornat, M.J., (2002) “Global kinetic rate parameters for the formation of polycyclic aromatic hydrocarbons from the pyrolyis of catechol, a model compound representative of solid fuel moieties”, Energy Fuels, 16, 1331–1336.
29.Li, C., Suzuki, K., (2009) “Tar property, analysis, reforming mechanism and model for biomass gasification—An overview”, Renewable and Sustainable Energy Reviews, 13(3), 594-604.
30.Maniatis, K., Beenackers, A, A, C, M., (2000) “Tar Protocols. IEA Bioenergy Gasification Task”, Biomass and Bioenergy, 18, 1-4.
31.Mani, S., Kastner, J.R., Juneja, A., (2013) “Catalytic decomposition of toluene using a biomass derived catalyst”, Fuel Processing Technology, 114, 118-125.
32.Mendiara, T., Johansen, J.M., Utrilla, R., Geraldo, P., Jensen, A.D., Glarborg, P., (2011) “Evaluation of different oxygen carriers for biomass tar reforming (I): Carbon deposition in experiments with toluene”, Fuel, 90(3), 1049-1060.
33.Milne, T.A., Evans, R.J., Abatzoglou, N., (1998) “Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion”, NREL/TP-570-25357.
34.Popova, M., Szegedi, A., Cherkezova-Zheleva, Z., Á.Z., Dimitrova, A., Mitov, I., (2010) “Toluene oxidation on chromium- and copper-modified SiO2 and SBA-15”, Applied Catalysis A: General, 381(1-2), 26-35.
35.Reid, R.C., Prausnitz, J.M., Polling, B.E., (1988) “The Properties of Gases & Liquids”, 4th edit, McGraw-Hill.
36.Sousa, L.C.R., (2001) “Gasification of Wood, Urban Wastewood (Altholz) and Other Wastes in a Fluidised Bed Reactor”, Technische Wissenschaften ETH Zurich.
37.Scheer, A.M., Mukarakate, C., Robichaud, D.J., Nimlos, M.R., Ellison, G.B., (2011) “Thermal decomposition mechanisms of the methoxyphenols: formation of phenol, cyclopentadienone, vinylacetylene, and acetylene”, J Phys Chem A, 115(46), 13381–13389.
38.Shie, J.L., Chang, C.Y., Tu, W.K., Tang, Y.C., Liao, J.K., Tzeng, C.C., Li, H.Y., Yu, Y.J., Kuo, C.H., Chang, L.C., (2008) “Major products obtained from plasma torch pyrolysis of sunflower-oil cake”, Energy & Fuels, 22, 75–82.
39.Shie, J.L., Chang, C.Y., Tzeng, C.C., Hung, P.Y., Chang, C.C., Chiang, S.W., Tseng, J.Y., Tu, W.K., Yuan, M.H., Li, H.Y., Yu, Y.J., (2010) “Water-enhanced reforming of syngas to fuels and chemicals in a batch reactor”, J. Environ. Eng. Manage, 20(3), 181-187.
40.Shie, J.L., Lin, J.P., Chang, C.Y., Wu, C.H., Shih, S.M., Lee, D.J., (2004) “Pyrolysis of oil sludge with additives of catalytic solid wastes”, J. Anal. Appl. Pyrol, 71(2), 695-707.
41.Shie, J.L., Tsou, F.J., Lin, K.L., (2010) “Steam Plasmatron Gasification of Distillers Grains Residue from Ethanol Production”, Bioresource Technology, 101, 5571-5577.
42.Shie, J.L., Tsou, F.J., Lin, K.L., Chang, C.Y., (2010) “Bioenergy and Products from Thermal Pyrolysis of Rice Straw Using Plasma Torch”, Bioresource Technology, 101, 761–768.
43.Tao, K., Ohta, N., Liu, G., Yoneyama, Y., Wang, T., Tsubaki, N., (2013) “Plasma enhanced catalytic reforming of biomass tar model compound to syngas”, Fuel, 104, 53-57.
44.Thunman, H., Niklasson, F., Johnsson, F., Leckner, B., (2001) “Composition of volatiles gases and thermochemical properties of wood for modelling of fixed or fluidized beds”, Energy Fuels, 15, 1488–1497.
45.Virginie, M., Courson, C., Kiennemann., A., (2010) “Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst”, Comptes Rendus Chimie, 13(10), 1319-1325.
46.Wang, C. H., Lin, S.S., Chen, C.L., Weng, H.S., (2006) “Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons”, Chemosphere, 64(3), 503-509.
47.Wang, Y., Namioka, T., Yoshikawa, K., (2009) “Effects of the reforming reagents and fuel species on tar reforming reaction”, Bioresour Technol 100(24), 6610-6614.
48.Wender, I., (1996) “Reaction of Synthesis Gas”, Fuel Processing Technology, 48, 189-297.
49.Zamboni, I., Courson, C., Niznansky, D., Kiennemann, A., (2014) “Simultaneous catalytic H2 production and CO2 capture in steam reforming of toluene as tar model compound from biomass gasification”, Applied Catalysis B: Environmental, 145, 63-72.
50.Zhang, C., Zhang, X., Yang, J., Liu, Z., (2007) “Analysis of Polynuclear Aromatic Hydrocarbons in Heavy Products Derived from Coal and Petroleum by High Performance Liquid Chromatography”, Journal of Chromatogram A, 1167, 171-177.
51.Zhang, R., Wang, H., Hou, X., (2014) “Catalytic reforming of toluene as tar model compound: Effect of Ce and Ce–Mg promoter using Ni/olivine catalyst”, Chemosphere, 97, 40-46.
52.Zhao, Z.L., Huang, H.T., Wu, C.Z., Li, H.B., Chen, Y., (2001) “Biomass pyrolysis in an argon/hydrogen plasma reactor”, Chemical Engineering & Technology, 24(11), 197-199.
53.行政院經濟部能源局,(2007),「能源科技研究發展白皮書」,第116-134頁。
54.行政院經濟部能源局,(2009),「再生能源發展條例」,台灣。
55.行政院經濟部能源局工業技術研究院,(2010),「淨煤技術及二氧化碳補獲封存技術發展計畫」,期末報告。
56.江康鈺、葛家賢、童翔新、呂承翰、簡光勵、林明輝,(2010),「生質物氣化合成氣淨化技術之整合性評估與應用研究」,行政院環境保護署委託研究計畫,EPA-99-U1U4-04-005。
57.行政院經濟部能源局,(2013),「101年年報」,第45-60頁。
58.行政院經濟部能源局,(2014),「能源統計月報」,網址:http://web3.moeaboe.gov.tw/ecw/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142
59.行政院經濟部能源局,(2014),「能源能源產業技術白皮書」,第13-44頁;第165-288頁。
60.行政院環境保護署,(2014),「營運月報」,網址:http://swims.epa.gov.tw/swims/swims_net/Statistics/Statistics_Month_Table.aspx?_Year=2014&_Month=05
61.吳耿東、李宏台,(2001),「廢棄物氣化技術」,工程月刊,第74卷第4期,第 85-96頁。
62.李宏台、吳耿東、萬皓鵬、徐瑞鐘,(2005),「我國生質能源之應用」,經濟前瞻。
63.吳耿東、李宏台,(2007),「全球生質能源應用現況與未來展望」,林業研究專訊第14卷第3期,第5-9頁。
64.李振芳,(2008),「美國與巴西生質能源發展政策與影響之研析」,行政院經濟建設委員會綜合計劃處,台北,台灣。
65.吳鐘堯,(2008),「添加物及蒸汽對電漿熱處理生質廢棄物之影響」,國立臺灣大學環境工程學研究所碩士論文。
66.呂承翰,(2010),「廢紙排渣衍生燃料氣化反應過程產能效率及焦油減量之評估研究」,私立逢甲大學碩士論文。
67.林明輝,(2011),「應用高溫淨化技術去除稻稈氣化過程衍生焦油之評估研究」,私立逢甲大學碩士論文。
68.陳芃,(2010),「從微小變為顯著-微藻引領第三代生質燃料發展」,能源報導。
69.陳歷循,(2011),「蒸汽熱處理都市固體廢棄物熱電漿裂解氣化之研究」,國立宜蘭大學碩士論文。
70.張智華,(2012),「熱電漿觸媒重組溫室氣體產製合成氣技術之研究」,國立宜蘭大學環境工程研究所碩士論文。
71.董家齊、陳寬任,(2002),「奇妙的物質第四態─電漿」,科學發展,354 期,第50-59頁。
72.萬皓鵬、李宏台,(2006),「定置型生質能源熱電應用系統」,台灣省鍋爐協會雙月刊第108期。
73.楊宇傑,(2007),「生質廢棄物電漿熱裂解之研究」,國立臺灣大學環境工程學研究所碩士論文。
74.劉致中,(2008),「生質精煉產業之發展現況與前景」,ITIS產業資訊服務網。
75.鄭幸雄、陳錫添、林秋裕、曾怡禎、李季眉、林信一、林明瑞、劉文佐,(2001),「台灣生物產氫研究現況及未來發展」,國科會生物產氫研究成果發表會,台南成功大學,pp. 1-1~1-9。
76.梁立緯,(2006),「以高溫微波電漿火炬轉化甲烷與二氧化碳之研究」,私立中原大學碩士論文。
77.趙國評、楊素幸,(2007),「淺談生質能」,林業研究專訊第14卷第3期,第10–13頁。
78.蔣本基、張慶源、林秋裕,(2012),「推廣農林及都市與事業廢棄物之生質能源應用策略規劃」,國立台灣大學嚴慶齡工業研究中心。
79.戴文堅、李宗憲,(2003),「固態廢棄物衍生燃料技術之應用評估」,第六屆資源與環境學術研討會,花蓮,台灣。
80.謝忠穎,(2010),「焦油於流體化床進行氣化之研究」,國立中興大學碩士論文。
81.謝哲隆,(2012),「台灣生質能技術發展現況與展望」,環保簡訊第16期,第1-11頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top