(3.215.183.251) 您好!臺灣時間:2021/04/22 10:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖依如
研究生(外文):Liau, Yi-Ru
論文名稱:電漿氣化熔融共處理事業廢棄物與溫室氣體之研究
論文名稱(外文):Co-treatment of Industry Waste and Greenhouse Gas Using Plasma Gasification and Melting Process
指導教授:謝哲隆博士
指導教授(外文):Shie, Je-Lueng Ph. D.
口試委員:張慶源吳耿東陳奕宏李元陞
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:141
中文關鍵詞:CO2共處理紙漿污泥下水污泥電漿火炬氣化熔融
外文關鍵詞:CO2 co-treatmenthnwet paper sludgesewage sludgeplasmas torcgasificatiomelting
相關次數:
  • 被引用被引用:1
  • 點閱點閱:685
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電漿氣化熔融系統(Plasma Gasification Melting, PGM),是在電漿反應器內將生質物或廢棄物進行熱處理,同時達到氣化與熔融之目標,以最大化回收可再利用能資源。本研究藉由電漿反應爐之高溫、高活性之特性,處理常見台灣東部區域事業廢棄污泥(例如:紙漿混和污泥(Wet paper sludge and forestry wood waste blends, WFB)、下水污泥(Sewage sludge, SW)與紙廠黑液燃燒殘渣(Green liquor dreg, GLD)等事業廢棄物,其中WFB與GLD(簡稱綠泥)皆為台灣東部某製紙廠產生之廢棄物,而SW則為宜蘭某水資源回收中心(民生污水處理廠)所產生之污泥廢棄物。
從熱值與近似分析可發現SW與WFB之熱值皆高於廢棄物於焚化爐作為能源燃料之最低標準,而WFB含有乾基91.82 %的可燃分, SW約為54.04 wt.%。針對電漿熱處理程序而言, WFB適宜進行氣化產製合成氣,而SW因其高灰分之特性,較適宜以氣化熔融同時處理,除達到減容減積之效益外,更可獲得額外合成氣來源。
本研究除進行PGM處理外,亦針對CO2氣化劑之影響以及GLD混合污泥做為固態CO2共處理之可行性測試兩部分。探討操作參數有事業廢棄物污泥種類、操作溫度、反應時間、混和比例、批次及半批次操作等。結果顯示,批次試驗WFB添加氣態CO2後,H2及CO最高產氣濃度上升比率分別為48.74 %及23.55 %。而從累積質量百分率來看,則顯示H2及CO產量提升55.51 %及14.72 %。證實氣態CO2添加有助於WFB的電漿氣化反應。
SW添加氣態CO2於批次試驗及半批次(連續)試驗均顯示CO產量明顯提升,但H2及CH4則不明顯。但在CO2降解率方面,半批次(連續)則高於批次式,分別為38.99%及25.37%。
同時比較氣態CO2存在下批次試驗,WFB有較高H2產量,及CO2降解量。而SW則有較高的CO及CH4產量。特別是在SW反應後期CO2持續降解而CO持續產生,證明SW殘渣有助於CO2於電漿下進一步降解。
而以GLD作為固態CO2來源時,經電漿高溫環境下,GLD會釋出CO2,作為氣化劑,在不同的混和物料比中,三種SW/GLD配比下,以SW/GLD=1/1時有最高H2產量,SW/GLD=1/1.5時,有最高CH4產量,而CO及CO2均隨著GLD添加量增加而上升。顯示GLD為有效的固態CO2來源,但其添加有最適化比例。提升反應溫度將有助於CO2及CH4的更進一步降解,且同時提升CO產量,但稍微抑制H2生成,整體合成氣產量呈現小幅上升。
從殘渣特性分析發現,固態CO2的添加比氣態CO2的添加使得SW的反應更為完全,灰分達100%全為無機熔岩成分。TCLP結果證明為無害。SEM圖形更顯示SW添加GCD後殘渣,形成團狀奈米顆粒群聚結構。因此本研究證明固態CO2的混和添加於SW中更助於反應的完全及全面,是一個PGM技術發展潛力方向。

Plasma Gasification Melting (PGM) process is a system that treats biomass or waste in a plasma reactor to optimum recovery of energy and resource as well as aching the purpose of gasification and melting at the same time. The plasma thermal treatment of wet paper sludge (WPS) and forestry wood waste (FWW) blends (WFB), sewage sludge (SW) and green liquor drug (GLD) are studied. The sources of WFB and GLD were rejected wastes from a paper plant located at east Taiwan, and SW was collected from Yi-Lan sewage wastewater treatment. This process was performed in pilot-scale 10 kW torch plasma and designed to investigate the effects of batch and semi-batch feeding of sample and their results on product yields, gas composition and thermal treatment performance were addressed. From the heating value (HV) and primate analyses, the HVs of SW and WFB are all higher than the limited value of the design of an incinerator. The combustible components of WFB and SW were about 91.82 and 54.04 wt%, respectively. For the PGM process, WFB is preferred to produce syngas from the gasification while SW is suitable for the melting coupled with gasification due to its high ash components. In the same time, the volume reduction was effective and extra energy of syngas was attended. Controlled at 873 K of torch plasma reactor, the higher heating value (HHV) of residue increased to 1.26 time of sample and its maximum value reached to 5288 kcal/kg for WFB. The production of syngas (CO and H2) is the major component, and almost 90% of the gaseous products appear in 2 min of reaction time, with relatively high reaction rates. About WFB, The maximum instantaneous concentrations and the corresponding time of CO and H2 occur at 187,208 and 232,193 ppmv, respectively, and 0.75 min for 873 K, with 0.5 min sampling interval. For batch operation, the total syngas ratio is about 81.47 wt. % (CO of 75.94 and H2 of 5.53 wt.%) of raw sample, and the mass ratio of residue is 0.53 wt.%.
In addition to the PGM process, the effects of oxidation agents were also evaluated and divided into two parts: gaseous CO2 and solid type of CO2 (GLD as the source). The tested parameters were: types of sludge, temperatures, reaction time, mixed ratios, batch and semi-batch etc. From the gaseous CO2 injection in PGM process of WFB, the increases of the highest concentrations of H2 and CO were 48.74 and 23.55 %, respectively. From the results of accumulated mass percentages, the mass increases of H2 and CO were 55.51 and 14.72 %, respectively. It is proved that gaseous CO2 injection helps the gasification of WFB in PGM process. In the batch and semi-batch tests of gaseous CO2 injection in SW, the production of CO was obvious; however, they were not important in H2 and CH4. Furthermore, considering the degradation of CO2, they were 38.99 % in semi-batch test and 25.37% in batch test; semi-batch test was higher than that of batch test. In summary, higher H2 production and CO2 degradation were appeared in WFB test and higher CO and CH4 productions were shown in SW tests. Therefore, the residues of SW in PGM process can enhance the CO2 degradation with the continuous production of CO.
In the tests of the input of solid type of CO2 in PGM process, GLD would release CO2 in the plasma aura as oxidation agent. Three mixed ratios of SW/GLD were tested; the highest H2 production was appeared at SW/GLD = 1/1 while the highest production of CH4 at SW/GLD = 1/1.5, CO and CO2 increased with the increase of GLD input. Therefore, it is evidenced that GLD can be effective as solid type of CO2 at an optimum input ratio. Also with the increase of temperature, the degradations of CO2 and CH4 rose as well as the CO production; however, it slightly restrained the H2 output, moreover, total production of syngas increased obviously.
From the residue analyses, the input of solid type CO2 made the reaction more completely with the comparison to the gaseous CO2 injection. From the scanning electron micrograph (SEM) spectra, the raw WFB was displaced as long fiber and the construction eas complete, however, SW and GLD had broken image. Furtheremore, WFB became to broken piece after the PGM process with ash and small piece of fiber co-existed, SW and GLD displaced the spherical nanotype materials and didn’t have different SEM images. The residues from the PGM process were almost the inorganic components that were converted into 100% non-leachable vitrified lavas, and were non-hazardous from the TCLP tests. Finally, this study addressed a novelty PGM modified direction and technology in addition to the solid type CO2 co-treatment as oxidation agent.

目錄
摘要 I
ABSTRACT IV
目錄 VIII
圖目錄 XI
表目錄 XIV
符號說明 XV
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 事業污泥 3
2.1.1 我國下水污泥的產出與處置現狀 4
2.1.2 宜蘭水資源回收中心下水污泥 5
2.1.3 台灣東部某紙廠污泥特性 6
2.1.4 台灣東部某紙廠黑液燃燒殘渣綠泥特性 7
2.2 事業廢棄物處理技術 8
2.2.1 事業廢棄物處理特性與危害 9
2.2.2事業廢棄物處理技術種類 10
2.2.3事業污泥處理技術於我國現狀 12
2.3 電漿熔融技術 13
2.3.1電漿特性 13
2.3.2電漿分類 15
2.3.3 電漿火炬熱裂解氣化技術 19
2.3.4 國內外電漿火炬熱烈解氣化熔融技術 20
2.4 處理後殘渣之處置 26
2.5 能資源回收之效益 26
第三章 研究方法 31
3.1研究流程圖 31
3.1.1文獻的蒐集與探討 31
3.1.2 樣品的收集、前處理及基本特性分析 31
3.1.3 電漿火炬氣化熔融實驗 32
3.1.4 產物分析 32
3.2 樣品的前處理 35
3.2.1 樣品乾燥 35
3.2.2樣品破碎 35
3.2.3 樣品的壓錠與再乾燥 35
3.3 樣品基本特性分析 35
3.3.1 元素分析 36
3.3.2 近似分析 37
3.3.3 熱值分析 38
3.3.4 晶型測定分析 40
3.3.5 重金屬分析 40
3.3.6 TCLP分析 41
3.3.7 掃描式電子顯微鏡分析 44
3.4電漿氣化熔融實驗 45
3.4.1先期測試 45
3.4.1.1 電漿火炬系統測漏測試 45
3.4.1.2電漿N2流量校正 45
3.4.1.3 電漿操作溫度校正 46
3.5 電漿火炬系統與操作 48
3.5.1 電漿火炬系統 48
3.5.2 電漿氣化熔融操作步驟 51
3.5.2.1 電漿氣化熔融實驗步驟: 51
3.5.1.2電漿氣化熔融共處理CO2實驗步驟: 51
3.5.1.3電漿氣化熔融共處理GLD實驗步驟: 52
3.6 分析儀器 53
3.6.1 氣相層析儀-熱導偵測器 (GC-TCD) 53
3.6.2廢氣分析儀 56
3.7 氣體產物計算 59
第四章 結果與討論 61
4.1預期產物分析 61
4.2 原始樣品特性分析結果 62
4.2.1 近似分析 62
4.2.2 元素分析 62
4.2.3 熱值分析 66
4.2.4 TCLP分析 67
4.2.5 SEM 68
4.3 氣體產物綜合討論 72
4.3.1二氧化碳共處理對紙漿混和污泥裂解氣化實驗之影響 72
4.3.2二氧化碳共處理對下水污泥氣化熔融實驗之影響 81
4.3.3比較二氧化碳共處理對紙漿混和污泥與下水污泥之影響 90
4.3.4 黑液燃燒殘渣電漿裂解熔融效應 97
4.3.5黑液燃燒殘渣作為固態二氧化碳與下水污泥共處理之影響 99
4.3.6 不同操作溫度對PGM處理SW/GLD之影響 107
4.4電漿氣化熔融殘渣綜合討論 116
4.4.1 殘渣元素分析 116
4.4.2 殘渣近似分析與熱值分析 118
4.4.3 TCLP試驗分析結果 119
4.4.4 SEM分析 121
4.5綜合討論 131
第五章 結論與建議 133
5.1 結論 133
5.2建議 135
第六章 參考文獻 136

1.Acaroglu M., Aksoy A.S., Ogut H. (1999) “The potential of biomass and animal waste of Turkey and the possibilities of these as fuel in thermal generating stations,” Energy Sources, 21(4), 339-345.
2.Balgaranova J. (2003) “Plasma chemical gasification of sewage sludge,” Waste Management & Research, 21(1), 38-41.
3.Bridgwater A.V. (2003) “Renewable fuels and chemicals by thermal processing of Biomass,” Journal Chemical Engineering, 91(2-3), 87-102.
4.Bridgwater, A. V. (1999) “Fast pyrolysis of biomass: a handbook,” Vol. 1, Chapter 1, p.1, CPL Press.
5.Byun Y., Cho M., Chung J. W., Namkung W., Lee H. D., ang S. D., Kim Y. S., Lee J. H., Lee C. R., Hwang S. M. (2011) “Hydrogen recovery from the thermal plasma gasification of solid waste” Journal of Hazardous Materials, 190(1-3), 317–323.
6.Byun Y., Namkung W., Cho M., Chung J.W., Kim Y.S., Lee J.H., Lee C.R., Hwang S.M. (2010) “Demonstration of Thermal Plasma Gasification/Vitrification for Municipal Solid Waste Treatment,” Environ. Sci. Technol., 44, 6680-6684.
7.Chen G., Andries J., Luo Z., Spliethoff H. (2003) “Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects,” Energy Conversion and Management, 44(11), 1875-1884.
8.Cubas A.L.V., Carasek E., Debacher N.A., de Souza I.G. (2005) “Development of a DC-plasma torch constructed with graphite electrodes and an integrated nebulization system for decomposition of CCl4,” J. Brazilian Chemical Society, 16(3B), 531-534.
9.Hernández J.J., Aranda G., Barba J., Mendoza J.M. (2012)“Effect of steam content in the air–steam flow on biomass entrained flow gasification” Fuel Processing Technology, 99, 43–55.
10.Hlina M., Hrabovsky M., Kopecky V., Konrad M., Kavka T., Skoblja S. (2006) “Plasma gasification of wood and production of gas with low content of tar,” Czechoslovak J. Physics, 56(10), 1179-1184.
11.Hrabovsky M., Konrad M., Kopecky V., Hlina M., Kavka T., Van Oost G., Beeckman E., Defoort B. (2006) “Gasification of biomass in water/gas-stabilized plasma for syngas production,” Czechoslovak Journal of Physics, 56(2), 1199-1206.
12.Huang H., Tang L. (2007) “Treatment of organic waste using thermal plasma pyrolysis technology,” Energy Conversion and Management, 48, 1331-1337.
13.Iliuta I., Leclerc A., Larachi F.(2010) “Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor – New reactor concept” Bioresource Technology, 101( 9), 3194–3208.
14.Jitkarnka S., Chusaksri B., Supaphol P., Magaraphan R. (2007) “Influences of thermal aging on properties and pyrolysis products of tire tread compound,” Journal of Analytical and Applied Pyrolysis, 80(1), 269-276.
15.Kang S.H., Son S.M., Song P.S., Kang Y., Choi M. J. (2006) “Pyrolysis for the rycycling of polystyrene plastic (PSP) wastes in a swirling fluidized-bed reactor” Studies in Surface Science and Catalysis, 159, 529–532.
16.Karatas H., Olgun H., Engin B., Akgun F. (2013) “Experimental results of gasification of waste tire with air in a bubbling fluidized bed gasifier” Fuel, 105, 566–571.
17.Keener T.C., Unapumnuk K., Lu M., Liang F. (2008) “Investigation into the removal of sulfur from tire derived fuel by Pyrolysis” Fuel, 87,951–956.
18.Kim S.W., Park H.S., Kim H.J. (2003) “100 kW steam plasma process for treatment of PCBs (polychlorinated biphenyls) waste,” Vacuum, 70(1), 59-66.
19.Kim Y. D., Yang C. W., Kim B. J., Kim K. S., Lee J. W., Moon J. H., Yang W., Yu T. U., Lee U. D. (2013) “Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier” Applied Energy.
20.Klass D.L. (1998) “Biomass for renewable energy,” Fuels and Chemicals, San Diego, Academic Press, 567-574.
21.Lee J. M., Kim Y. J., Kim S. D. (1998) “Catalytic coal gasification in an internally circulating fluidized bed reactor with draft tube” Applied Thermal Engineering, 18(11), 1013–1024.
22.Lee J.M., Lee J.S., Kim J.R., Kim S.D. (1995) “Pyrolysis of waste tires with partial oxidation in a fluidized-bed reactor” Energy, 20,969–976.
23.Lemmens B., Elslander H., Vanderreydt I., Peys K., Diels L., Oosterlinck M., Joos M. (2007) “Assessment of plasma gasification of high caloric waste streams,” Waste Management, 27, 1562-1569.
24.Li Y., Che D., Liu Y. (2012)“CFD simulation of hydrodynamic characteristics in a multiple-spouted bed” Chemical Engineering Science, 80, .365–379.
25.Lim M. T., Alimuddin Z. (2008) “Bubbling fluidized bed biomass gasification—Performance, process findings and energy analysis” Renewable Energy, 33(10), 2339–2343.
26.Lopez G., Olazar M., Aguado R., Bilbao J. (2010) “Continuous pyrolysis of waste tyres in a conical spouted bed reactor” Fuel, 89,1946–1952.
27.Lv P., Yuan Z., Ma L., Wu C., Chen Y., Zhu J. (2007) “Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier” Renewable Energy, 32( 13), 2173–2185.
28.Marques I.I.D.R., Rocha S.M.S., Lira T.S., Bacelos M.S. (2012) “Air-Carton Packaging Waste Flow Dynamics in a Conical Spouted Bed” Procedia Engineering, 42, 70–79.
29.Mastellone M. L., Zaccariello L. (2013) “Gasification of polyethylene in a bubbling fluidized bed operated with the air staging” Fuel, 106, 226–233.
30.Matsuoka K., Hosokai S., Kuramoto K., Suzuki Y. (2013) “Enhancement of coal char gasification using a pyrolyzer–gasifier isolated circulating fluidized bed gasification system” Fuel Processing Technology, 109, 43–48.
31.Meng X., Jong W., Fu N., Verkooijen A. H.M. (2011) “Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: Effects of operational conditions on product gas distribution and tar formation” Biomass and Bioenergy, 35(7), 2910–2924.
32.Miao Q., Zhu J., Barghi S., Wu C., Yin X., Zhou Z. (2013) “Modeling biomass gasification in circulating fluidized beds” Renewable Energy, 50, 655–661.
33.Mountouris A., Voutsas E., Tassios D. (2008) “Plasma gasification of sewage sludge: Process development and energy optimization” Energy Conversion and Management, 49(8), 2264–2271.
34.Moustakas K., Fatta D., Malamis S., Haralambous K, Loizidou M. (2005) “Demonstration plasma gasification vitrification system for effective hazardous waste treatment,” J. Hazardous Materials, B123(1-3), 120-126.
35.Murphy A.B. (1999) “Plasma destruction of gaseous and liquid wastes,” Heat and Mass Transfer Under Plasma Conditions Annals of the New York Academy of Sciences, 891(1), 106-123.
36.Murphy A.B., McAllister T. (2001) “Modeling of the physics and chemistry of thermal plasma waste destruction,” Physics of Plasmas, 8(5), 2565-2571.
37.Naqvi M., Yan J., Dahlquist. (2012) “Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO2 capture” Bioresource Technology, 110,637-644.
38.Nemtsov D.A., Zabaniotou A. (2008) “Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor” Chemical Engineering Journal, 143(1–3), 10–31.
39.Park H.S., Kim C.G., Kim S.J. (2006) “Characteristics of PE gasification by steam plasma,” Journal of Industrial and engineering Chemistry, 12(2), 216-223.
40.Passos M.L., Mujumdar A.S. (2000) “Effect of cohesive forces on fluidized and spouted beds of wet particles” Powder Technology, 110(3), 222–238.
41.Petersen I., Werther J. (2005) “ Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed” Chemical Engineering and Processing: Process Intensification, 44( 7), 717–736.
42.Pfender E. (1999) “Thermal Plasma Technology: Where Do We Stand and Where Are We Going?”Plasma Chemistry and Plasma Processing, 19(1), 1-31.
43.Plis P., Wilk R.K. (2011) “Theoretical and experimental investigation of biomass gasification process in a fixed bed gasifier” Energy, 36, 3838-3845.
44.Poykio R, Nurmesniemi H, Kuokkanen T, Peramaki P. (2006) “Green liquor dregs as an alternative neutralizing agent at a pulp mill” Environmental Chemistry Letters,
45.Puig-Arnavat M., Bruno J. C., Hernández J. A., Coronas A. (2013) “Artificial neural network models for biomass gasification in fluidized bed gasifiers” Biomass and Bioenergy, 49, 279–289.
46.Sadaks S. (2009) “Gasification, Producer gas and Syngas.” Department of Agricultural and Biosystems Engineering.
47.San G., Domínguez M.P., Hernández M., Sanz-Pérez F. (2012) “Characterization and potential applications of solid particles produced at a biomass gasification plant” Biomass and Bioenergy, 47, 134–144.
48.Sheeba K.N., Babu S.C.J., Jaisankar S. (2009)“Air gasification characteristics of coir pith in a circulating fluidized bed gasifier” Energy for Sustainable Development, 13(3), 166–173
49.Shie J.L., Chang C.Y., Tu W.K., Tang Y.C., Liao J.K., Tzeng C.C., Li H.Y., Yu Y.J., Kuo C.H., Chang L.C. (2008) “Major products obtained from plasma torch pyrolysis of sunflower-oil cake,” Energy & Fuels, 22, 75-82.
50.Shie J.L., Tsou F.J., Lin K.L. (2010) “Steam plasmatron gasification of distillers grains residue from ethanol production” Bioresource Technology, 101(14), 5571–5577.
51.Shie, J.L., Chang, C.Y., Lin, J.P., Wu, C.H., Lee D.J., Chang, C.F. (2004) “Kinetics of the oxidative thermal treatment of oil sludge at low heating rates,” Energy & Fuels, 18(5), 1272-1281.
52. Smalley R. E. (2003) “Top Ten Problems of Humanity for Next 50 Years,” Energy & NanoTechnology Conference, Rice University.
53.Sues A., Juraščík M., Ptasinski K. “Exergetic evaluation of 5 biowastes-to-biofuels routes via gasification” Energy, 35(2), 996–1007.
54.Watanabe T., Shimbara S. (2003) “Halogenated hydrocarbon decomposition by steam thermal plasmas,” High Temperature Material Processes, 7(4), 455-474.
55.Yaman S. (2004) “Pyrolysis of biomass to produce fuels and chemical feedstocks,” Energy Conversion and Management, 45(5), 651-671.
56.Yoon S.J., Lee J.G. (2012) “Hydrogen-rich syngas production through coal and charcoal gasification using microwave” international journal of hydrogen energy, 37, 17093-17100.
57.Yoshida Y., Dowaki K., Matsumura Y., Matsuhashi R., Li D., Ishitani H., Komiyama H. (2003) “Comprehensive comparison of efficiency and CO2emissions between biomass energy conversion technologies—position of supercritical water gasification in biomass technologies” Biomass and Bioenergy, 25(3), 257–272.
58.Zhang Q., Dor L., Fenigshtein D., Yang W., Blasiak W. (2012) “Gasification of municipal solid waste in the Plasma Gasification Melting process” Applied Energy, 90(1), 106–112.
59.Zhao Z., Huang H., Wu C., Li H., Chen Y. (2001) “Biomass pyrolysis in an argon/hydrogen plasma reactor,” Engineering in Life Sciences, 24(5), 197-199.
60.李珠,2002,「感應偶合電漿質譜儀技術及在才料分析上的應用」,工業材料雜誌,第181期,87-93。
61.董家齊、陳寬任,2002,「奇妙的物質第四態─電漿」,科學發展,354 期,50-59。
62.何春松,2003「電漿熔融技術處理焚化爐灰渣之實例探討」,台灣環保產業雙月刊,第19期,5-9。
63.陳志平,2004,「生質柴油技術」,化工技術月刊,第147期。
64.邱志明,2006,「臺灣人工林何去何從」,臺灣林業期刊,32卷,第3期。
65.劉佳峰,2006,「渦旋式流體化床設焚化系統概念計」,中原大學化學工程學系研究所碩士論文。
66.萬皓鵬、李宏台,2006,「定置型生質能源熱電應用系統」,台灣省鍋爐協會雙月刊,第108期。
67.吳耿東、李宏台,2007,「全球生質能供應現況與未來展望」,林業研究專訊,14(3),4。
68.楊宇傑,2007,「生質廢棄物電漿熱裂解之研究」,國立臺灣大學環境工程學研究所碩士論文。
69.吳鐘堯,2008,「添加物及蒸汽對電漿熱處理生質廢棄物之影響」,國立臺灣大學環境工程學研究所碩士論文。
70.經濟學人,2009,「The environment:Biofools」, Science and technology。
71.陳芃,2010,「從微小變為顯著 微藻引領第三代生質燃料發展」,能源報導,23-26。
72.鄭森松,2010,「天然防蚊樹種-柳杉」,臺灣林業,第36卷,第4期。
73.陳志鴻,2011,「稻殼於氣化產生合成氣」, 逢甲大學化學工程學所碩士論文。
74.陳朝羿2011,「木質生質物與污泥於流體化床進行混合氣化之研究」,中興大學森林學系所碩士論文。
75.陳嚦循,2011,「蒸氣熱處理都市固體廢棄物熱電漿裂解氣化之研究」,國立宜蘭大學環境工程學系研究所碩士論文。
76.行政院農業委員會,2012,「臺灣森林每年主產物產量統計表」,農業統計年報。
77.張智華,2012,「熱電漿觸媒中組溫室氣體產製合成氣技術之研究」,國立宜蘭大學環境工程學系研究所碩士論文。
78.楊逸凡,2013,「柳杉及焙燒柳杉於不同氣化劑下熱電漿氣化影響之研究」,國立宜蘭大學環境工程學系研究所碩士論文。
79.蔣本基、張慶源、林秋裕,2012,「推廣農林及都市與事業廢棄物之生質能源應用策略規劃」,國立台灣大學嚴慶齡工業研究中心。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔