跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳明芯
研究生(外文):CHEN, MING-HSIN
論文名稱:探討抗菌胜肽與抗生素的合併使用對多重抗藥性大腸桿菌之抗菌效果
論文名稱(外文):Antibacterial effects of antimicrobial peptides incombination of antibiotics against multidrug-resistantEscherichia coli
指導教授:陳威戎陳威戎引用關係
指導教授(外文):Wei-Jung Chen
口試委員:林景堉許惠貞陳怡伶
口試委員(外文):LIN, CHING-YUHSU, HUI-CHENCHEN, YI-LIN
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物資源學院碩士在職專班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:65
中文關鍵詞:大腸桿菌抗菌胜肽多重抗藥性協同作用加成效應
外文關鍵詞:Escherichia coliantimicrobial peptidesmultidrug-resistantsynergyadditivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:680
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
自1980年代後期以來,多重抗藥性 (Multi-drug resistant, MDR) 腸內菌被認為是院內感染爆發的主要成因;最常見的腸道細菌是大腸桿菌。近年來多次研究證實,陽離子抗菌胜肽(antimicrobial peptides, AMPs)是新一代的抑菌劑中最具有發展潛力者。它們在所有生物體中皆可被發現。AMPs可選擇性地結合到帶負電荷的細菌細胞膜,誘導細菌裂解,或進入細菌干擾其正常生理代謝活性,從而導致細菌死亡。部分的研究顯示,有些AMPs 對MDR腸內菌具抑菌功效。在本研究中,我們使用人工合成AMP H1-a,及比目魚AMP pleurocidin的衍生物Ple-a;測試其與一系列臨床常用抗生素合併使用時,對MDR大腸桿菌的抗菌作用。實驗結果顯示,青黴素藥物(氨芐西林),頭孢菌素類藥物(頭孢他定/頭孢噻肟),和β-內酰胺/β-內酰胺藥物(氨芐西林 - 舒巴坦)與AMPs合併使用時,表現出顯著的協同作用。與其他類型的抗生素,如Fluroquinolone (左氧氟沙星)合併使用AMPs 大多表現為加成效應。本研究初步證實,AMPs 與抗生素合併使用,可作為未來對抗MDR菌株之新型抗菌製劑。
Extensive use of classical antibiotics has led to the growing emergence of multidrug-resistant (MDR) bacteria. Since the late 1980s, MDR intestinal bacteria were believed to be the main cause of nosocomial infection outbreak in medical centers, and the most common intestinal bacterium is Escherichia coli. Evidence has suggested that cationic antimicrobial peptides (AMPs) are of greatest potential to represent a new class of antibiotics. They can be found in almost all living organisms. AMPs can selectively bind to negatively charged bacterial cell membrane, induce cell lysis, or enter bacteria and interrupt with their biological activities, thus leading to cell death. According to the previous studies, some AMPs were also potent against MDR bacterial strains. In the current study, we used two AMPs, a synthetic AMP H1-a, and a derivative from winter flounder AMP pleurocidin, Ple-a, in combination with several groups of antibiotics and tested their antibacterial effects against MDR E. coli. Our results indicated that AMPs used in combination with Penicillin drugs (Ampicillin), Cephalosporin drugs (Ceftazidime/Cefotaxime), and β-lactam/ β-lactamase drugs (Ampicillin-sulbactam) showing significant synergistic effects. AMPs used in combination with other groups of antibiotics, such as Fluroquinolone (Levofloxacin) mostly showed additive effects. These findings provided support that AMPs used in combination with antibiotics may serve as potential novel antibacterial agent in the near future.
摘要--------------------------------------------------------------------------------III
Abstract---------------------------------------------------------------------------IV
目錄 (Table of Contents)----------------------------- ------------------------VI
表目錄 (List of table)---------------------------------- -----------------------IX
圖目錄 (List of figures)-------------------------------- ---------------------XII
第一章 、緒論 1
第一節 、前言 1
第二節、 大腸桿菌 ( Escherichia coli,E.coli ) 3
第三節、 抗菌胜肽 ( antimicrobial peptides, AMPs ) 4
第四節、 抗生素 (Antibiotics) 6
第五節、 多重抗藥性腸內桿菌 9
第二章 、實驗材料與儀器 11
第一節、 生物材料 11
第二節、 藥品及試劑 11
第三節、 儀器設備 11
第三章 、實驗設計 13
第一節、 實驗目的 13
第二節、 實驗流程與方法 13
第三節、 菌株培養與鑑定 14
第四節、 菌落數與濁度之計算-平板計數法: 14
第五節、 抗生素藥物敏感性紙錠試驗 15
第六節、 抗菌胜肽、抗生素之最小抑菌濃度及抗菌胜肽H1-a, Ple-a, 與抗生素組合之最小抑菌濃度 15
第四章 、實驗結果與討論 17
第五章 、結論與未來展望 21
第一節、 結論 21
第二節、 未來展望 21
第六章 、參考文獻 23
第七章 、附件 30


Chen T, Zhou M, Rao P, Walker B, Shaw C. (2006) The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and North American Rana frogs share the same families of skin antimicrobial peptides. Peptides ;27: 1738–1744

Clinical Laboratory and Standards Institute (2013) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard ;M07-A8.

Conlon JM, Kolodziejek J, Nowotny N, Leprince J, Vaudry H, Coquet L, et al. (2007) Cytolytic peptides belonging to the brevinin-1 and brevinin-2 families isolated from the skin of the Japanese brown frog, Rana dybowskii. Toxicon ;50: 746–756

Fjell CD, Jenssen H, Hilpert K, Cheung WA, Panté N, Hancock RE, Cherkasov A. (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem;52 (7) : 2006 -15.

Goller CC, Arshad M, Noah JW, Ananthan S, Evans CW, Nebane NM, Rasmussen L, Sosa M, Tower NA, White EL, Neuenswander B, Porubsky P, Maki BE, Rogers SA, Schoenen F, Seed PC. (2014) Lifting the Mask: Identification of New Small Molecule Inhibitors of Uropathogenic Escherichia coli Group 2 Capsule Biogenesis.
PLoS One;9(7):e96054.

Greenblatt RM, Han JH, Nachamkin I, Tolomeo P, Lautenbach E. (2012) Defining relatedness in studies of transmission of antimicrobial-resistant organisms: variability in definitions across studies and impact of different approaches on study conclusions.
Infect Control Hosp Epidemiol;34(1):40-8.

Jenssen H, Hamill P, Hancock RE. (2006) Peptide antimicrobial agents.
Clin Microbiol ;19(3):491-511.

Kozlowska J, Vermeer LS, Rogers GB, Rehnnuma N, Amos SB, Koller G, McArthur M, Bruce KD, Mason AJ. (2014) Combined systems approaches reveal highly plastic responses to antimicrobial peptide challenge in Escherichia coli. PLoS Pathog;10(5):e1004104.

Lautenbach E, Metlay JP, Mao X, et al. (2010)The prevalence of fluoroquinolone resistance mechanisms in colonizing Escherichia coli isolates recovered from hospitalized patients. Clin Infect Dis;51:280–285

Malmsten M, Davoudi M, Walse B, Rydengård V, Pasupuleti M, Mörgelin M, Schmidtchen A. (2007) Antimicrobial peptides derived from growth factors.Growth Factors;25(1):60-70.

Nijssen S, Fluit A, van de Vijver D, Top J, Willems R, Bonten MJ. (2010) Effects of reducing beta-lactam antibiotic pressure on intestinal colonization of antibiotic-resistant gram-negative bacteria.
Intensive Care Med;36(3):512-9.

Oethinger M, Conrad S, Kaifel K, et al. (1996) Molecular epidemiology of fluoroquinolone-resistant Escherichia coli bloodstream isolates from patients admitted to European cancer centers. Antimicrob Agents Chemother;40:387–392.

Papo N, Shai Y. (2005) A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides.J Biol Chem;280(11):10378-87.

Peralta N, Godoi Vasconcelos AG, Härter Griep R, Miller L. (2012) Validity and reliability of the Work Ability Index in primary care workers in Argentina . Salud Colect; 8(2):163-73.

Rodriguez-Baño J, Alcalá JC, Cisneros JM, et al. (2008) Community infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Arch Intern Med;168:1897–1902.

Sato H, Feix JB. (2006) Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochim Biophys Acta;1758(9):1245-56.

Soulier A, Barbut F, Ollivier JM, Petit JC, Lienhart A. (1995) Decreased transmission of Enterobacteriaceae with extended-spectrum β-lactamases in an intensive care unit by nursing reorganization. J Hosp Infect;31:89–97.

Straus SK, Hancock RE. (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides.Biochim Biophys Acta; 1758(9):1215-23.

Weisenberg SA, Mediavilla JR, Chen L, Alexander EL, Rhee KY, Kreiswirth BN, Jenkins SG. (2012) Beta-lactamase-producing Enterobacteriaceae in international travelers and non-travelers in New York City.journal.pone;0045141.

Yamamoto M, Pop-Vicas AE. (2014) Treatment for infections with carbapenem-resistant Enterobacteriaceae: what options do we still have?Crit Care;18(3):229.

Zasloff M. (2002) Antimicrobial peptides in health and disease.
N Engl J Med;347(15):1199-200.

Zhang Y, Liu Y, Sun Y, Liu Q, Wang X, Li Z, Hao J. (2014) In vitro synergistic activities of antimicrobial peptide brevinin-2CE with five kinds of antibiotics against multidrug-resistant clinical isolates. Curr Microbiol;68(6):685-92.

吳芳姿, 王明琴, & 陳豪勇. (2005). 台灣地區腹瀉型病原性大腸桿菌流行概況分析. In 衛福部疾病管制署 (Ed.).

張上淳,陳美文,林美智. (2003) 台灣人用抗生素與動物用抗生素使用量之調查研究。感控雜誌 13:334-45。

疾病管制署CRE防治指引. In. (2013) (Ed.).

疾病管制署. (2011). 認識carbapenem抗藥性的腸道菌屬(CRE)及感染管制措施. In, vol. 21).
疾病管制署. (2012a). 台灣院內感染監視資訊系統(TNIS)2012年第3季 監視報告. In 疾病管制署 (Ed.)).

疾病管制署. (2012b). 衛生福利部疾病管制署2012年院內感染監視年報. In 衛生福利部疾病管制署 (Ed.).

張永佳、 李垣樟、 & 林秀真. (2010). 廣效性乙內醯胺分解酶 (β- lactamase)抗藥性之探討. 台灣醫界, 53, 5.

張家銘、陳立佳、 & 柯文謙. 乙內醯胺類抗生素及其抗藥性. 國立成功大學.

陳偉智、謝永宏. (2012)藉由Cephalosporins 結構了解其各代在臨床使用上的抗菌範圍. 藥學雜誌110冊

楊瑛碧. (2002)淺談Aaminoglycosides 的腎毒性. 三總藥訊

蔡清山、柯宗甫. 超廣效β-內醯胺酶(Extended Spectrum β-Lactamase; ESBL) 之檢測. 醫檢論壇


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top