(3.238.7.202) 您好!臺灣時間:2021/02/26 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴文正
研究生(外文):Wen-Jen Lai
論文名稱:市售水產品汞污染調查與風險評估
論文名稱(外文):Mercury Contamination in Commercial Marine Species and Risk Assessment
指導教授:駱錫能駱錫能引用關係
指導教授(外文):Shyi-Neng Lou
口試委員:蕭泉源洪良邦張永鍾陳翠瑤
口試委員(外文):Chyuan Yuan ShiauLang-Bang HungYung-Chung ChangTsui-Yao Chen
口試日期:2014-08-28
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物資源學院碩士在職專班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:104
中文關鍵詞:水產品甲基汞微波消化暫定每週容許攝取量
外文關鍵詞:aquatic productsmercurymethylmercurymicrowave digestionProvisional Tolerable Weekly Intake (PTWI)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
汞為人體有害重金屬,而人體汞曝露的主要來源係經由魚類的攝取,故而,了解市售水產品和其加工製品的汞含量,再以此資料基礎進一步分析探討汞攝入之風險,遂為近年頗受重視之課題。因此,本研究嘗試建立適當之魚肉汞含量測定方法,並分析調查市售水產品的汞含量,並據以推估攝取魚類之汞風險,以為後續標準訂定和消費者攝食之參考。結果顯示,以微波消化儀及冷蒸氣汞螢光光譜儀進行檢測。微波消化條件以800W,200℃,每次八管分解瓶,添加2 mL過氧化氫於硝酸中輔助消化,並加熱排除干擾物,再進入汞分析儀測定,測定時添加7%還原劑,可得最適之汞含量分析結果。實驗以油魚和鱰魚進行基質添加試驗,分別添加5 ppb 及 10 ppb汞,其回收率分別為94.1±1.9%及 92.2±4.3%,進一步以標準參考物質DORM-4及BCR-463驗證能力、回收率,測定值分別是0.397±0.017 ppm及2.83±0.07 ppm,均符合驗證範圍,顯示此方法測定汞有良好的準確度。而方法偵測極限與定量極限則分別為0.0039 ppb及0.013 ppb。
以建立之汞含量分析方法,檢測市售23種水產品,共計211件樣品。結果發現,全部樣品均符合國內規定之限量範圍,其中迴游性大型魚類,鯊魚、油魚、旗魚等平均含汞量分別為0.647 ppm、0.619 ppm和0.556 ppm,均大於0.5 ppm,屬最高汞魚類。而鮪魚及鱰魚的汞含量較低,分別為0.204 ppm 及0.126 ppm。其餘中小型魚類及淡水養殖水產品汞含量分別為0.084 ppm、0.014 ppm ,均屬中、低汞魚類。加工製品方面分魚鬆、魚罐及魚卵類,汞含量分佈分別為0.05~5.45 ppm、0.028~0.079 ppm、0.002~0.008 ppm,以魚鬆的檢測值最高,魚鬆又區分為未標示魚鬆、旗魚鬆、鮪魚鬆及鮭魚鬆,除了鮭魚鬆外,其餘各種魚鬆平均總汞值均超過0.5 ppm。惟實驗抽選樣本檢測甲基汞與總汞比例,以評估風險假設之合理性,鯊魚、油魚魚肉甲基汞總汞比例均超過95%,可就總汞值代替甲基汞,惟旗魚鬆甲基汞約只佔總汞值之20%。經評估國人每週特定魚類容許攝取量,比較JECFA的PTWI 1.6 μg/Kg/weekly建議值。6-12歲之兒童,鯊魚、旗魚、油魚每週攝食不超過85.8~92.2 g,而13歲以上的國人,每週攝取不超過140~170 g 左右,則不會超過JECFA建議的甲基汞PTWI建議值。未標示魚種之魚鬆則每週僅約可攝食120 g 左右,13歲以上者,則可每週攝食600多克旗魚鬆或200克左右未標示魚種之魚鬆。
推估國人每日攝入魚肉汞之風險值,顯示6-12歲之兒童專吃鯊魚、旗魚、油魚等,依每日魚肉攝取量計算風險百分比為382~445%,約高於安全風險值4倍之多。攝取不明魚種之魚鬆,風險值仍高達安全風險值的3倍。最後,就國人魚類攝取統計資料推估合適攝取的最大魚類汞含量, 0.3 ppm以下汞含量較適於13歲以上青少年及成人,而6-12兒童及老人則宜再減半,比較本研究檢測結果,僅水鯊、旗魚、油魚及未標示魚鬆等超過推估值,可能較具汞風險危害,需留意攝食量。

Mercury is one kind of heavy metals that do harms to human body, and the mercury exposure is mainly caused by fishes that take in mercury. Therefore, to learn the mercury content in aquatic products and processed products that are sold in markets and then further analyze the risks of mercury intake has become an important topic in recent years. This paper attempts to develop a suitable measurement method of mercury content contained in fish, and then analyzes the mercury content in commercial aquatic products to estimate the risks of mercury by taking in fish, which will be served as references for the standard establishment and suggested intake for consumers. The results show that the microwave digestion oven and cold vapor atomic fluorescence spectroscopy can be used for mercury detection. For the conditions of microwave digestion, it shall add 2 mL hydrogen peroxide into nitric acid with eight decomposition bottles under the condition of 800W and 200℃, which is heated to exclude interference chemicals, then reduced with 7% stannous chloride to convert Hg(II) to volatile Hg(0) in mercury analyzer, by which the appropriate analysis results of mercury contents. In the experiment, it takes oilfish and mahi to conduct the matrix spike experiments, with 5 ppb and 10 ppb mercury added into the samples and the respective recovery rate of 94.1±1.9% and 92.2±4.3%, and it further utilizes the standard reference material DORM-4 and BCR-463 to testify the capacity and recovery rate, showing that the proposed method can produce the fine accuracy rating. Moreover, the limit of detection and limit of quantification of the proposed method are 0.0039 ppb and 0.013 ppb.
With the proposed mercury content analysis method, it detects 23 kinds of aquatic products sold in the market, with 211 samples to be detected in total mercury. The results show that all samples meet the limitation scope stipulated in relevant domestic regulations, among which the average mercury content in large pelagic marine fishes meat, shark, oilfish and swordfish are 0.647 ppm、0.619 ppm and 0.556 ppm respectively, which are higher than 0.5 ppm, belonging to the fishes of highest mercury; however, tuna and mahi have a lower content of mercury, which are 0.204 ppm and 0.126 ppm respectively. In which, the medium- and small-size marine fishes and freshwater aquacultures aquatic product are respectively 0.084 ppm and 0.014 ppm, belonging to the fishes of moderate and least mercury content. In terms of processed fish products, it can be divided into fish floss, canned fish and fish roe, and the corresponding mercury contents are 0.05~5.45 ppm, 0.028~0.079 ppm, and 0.002~0.008 ppm, in which the content in fish floss is the highest. Moreover, fish floss can also be categorized as unlabeled fish floss, swordfish floss, tuna floss and salmon floss, all of which have an average mercury content of more than 0.5 ppm except the salmon floss. In addition, the selected samples are also taken to measure the proportion of methyl mercury in total mercury to estimate the rationality of the risk assessment. According to the experiment, the ratio of methyl mercury to total mercury in shark meat and oil fish meat exceed 95%, so the total mercury value can be used to represent the methyl mercury value, but the ratio of methyl mercury to total mercury in swordfish floss only account for 20%. After estimating the acceptable weekly intake of specified fish and comparing with the recommended PTWI value of 1.6 μg/kg/weekly by JECFA, it suggests that children of 6 to 12 years old shall take in the shark meat, swordfish and oilfish meat less than 85.8-92.2 g, and people above 13 years old less than 140-170 g. As for the fish floss of unlabeled fish specie, the weekly intake shall be no more than 120g for children, and people above 13 years old can take 600 g swordfish floss or 200 g unlabeled fish floss a week.
From the estimated risk value of daily fish mercury intake, the risk percentage for children of 6-12 years old only taking in shark meat, swordfish meat and oilfish meat is 382~445% calculated based on their daily fish intake, which is 4 times higher than the JECFA PTDI value. The risk value of taking in fish floss of unknown species is still 3 times higher than the JECFA PTDI value. In the end, it estimated the maximum acceptable fish mercury intake, finding that mercury content of fish lower than 0.3 ppm is suitable for teenagers and adults above 13 years old, which shall be halved for children of 6-12 years old and elder people. Through comparing the measured value in the paper, the values in blue shark, swordfish, oilfish and unlabeled fish floss exceed the suggested value, which is of high risk of mercury hazard and needed to pay attention to the intake amount.

目錄

摘要-----------------------------------------------------------------------------------------I
Abstract------------------------------------------------------------------------------------III
目錄-----------------------------------------------------------------------------------------VI
表目錄---------------------------------------------------------------------------------------IX
圖目錄---------------------------------------------------------------------------------------X
壹、前言-------------------------------------------------------------------------------------1
貳、文獻回顧----------------------------------------------------------------------------------4
一、汞的特性與用途-------------------------------------------------------------------------4
二、汞之散佈------------------------------------------------------------------------------5
三、汞之危害------------------------------------------------------------------------------6
(一)野生動物----------------------------------------------------------------------------6
(二)魚類-------------------------------------------------------------------------------7
(三)人類-------------------------------------------------------------------------------7
四、人體汞中毒症狀與治療--------------------------------------------------------------------8
五、汞含量分析方法------------------------------------------------------------- ------------9
(一)固態樣本消化前處理方法----------------------------------------------------------------9
(二)汞分析儀----------------------------------------------------------------------------10
六、每日魚類攝取量------------------------------------------------------------- ------------12
七、人體汞攝取容許值和魚類汞含量標準----------------------------------------------------------15
八、魚類汞污染分類標準----------------------------------------------------------------------19
九、近年我國市售水產品汞污染調查--------------------------------------------------------------19
十、風險評估方法---------------------------------------------------------------------------21
(一)美國採用的風險評估方式----------------------------------------------------------------21
(二)聯合國採用的風險評估方式--------------------------------------------------------------22
參、實驗架構----------------------------------------------------------------------------------25
一、分析條件之建立------------------------------------------------------------- ------------25
(一)微波消化部份------------------------------------------------------------------------25
(二)汞分析儀部份------------------------------------------------------------------------26
二、汞含量分析及風險評估--------------------------------------------------------------------27
肆、材料與方法--------------------------------------------------------------------------------28
一、實驗材料------------------------------------------------------------------------------28
二、藥品及器材----------------------------------------------------------------------------29
(一)藥品-------------------------------------------------------------------------------29
(二)器材-------------------------------------------------------------------------------31
三、方法---------------------------------------------------------------------------------31
(一)微波消化條件------------------------------------------------------------------------31
(二)消化液後續去干擾物處理----------------------------------------------------------------31
(三)汞含量分析--------------------------------------------------------------------------32
1.檢量線建立------------------------------------------------------------------------32
2.原子螢光分析儀-------------------------------------------------------- ------------33
(四)精密度評估--------------------------------------------------------------------------34
1.同日、異日精密度-------------------------------------------------------------------34
2.品質查核樣本----------------------------------------------------------------------34
(五)準確度評估--------------------------------------------------------------------------34
1.添加回收率試驗-------------------------------------------------------- ------------35
2.標準參考物質----------------------------------------------------------------------35
(六)最低偵測極限(LOD)與定量極限(LOQ)測定---------------------------------------------------35
(七)甲基汞檢測方法-----------------------------------------------------------------------36
(八)風險評估方式-------------------------------------------------------------------------36
1.推估國人每週特定魚類之容許攝取量------------------------------------------------------36
2.推估吃魚攝入汞之風險百分比-------------------------------------- ---------------------36
3.每日容許攝取魚肉汞濃度之推估----------------------------------------------------------37
肆、結果與討論----------------------------------------------------------------------------------38
一、魚肉汞含量分析條件之探討------------------------------------------------------------------38
(一)微波消化處理的影響因素------------------------------------------------------------------38
1.微波消化溫度------------------------------------------------------------------------38
2.微波消化管數量-------------------------------------------------------- --------------38
3.添加過氧化氫------------------------------------------------------------------------39
4.微波消化液加熱去除干擾物效應-----------------------------------------------------------40
(二)汞分析儀的影響因素----------------------------------------------------------------------40
1.稀釋液對標準曲線及樣品之影響-----------------------------------------------------------40
2.分析過程中還原劑濃度的影響-------------------------------------- -----------------------41
二、分析方法的確效------------------------------------------------------------- ---------------42
(一)精密度--------------------------------------------------------------------------------42
(二)準確度--------------------------------------------------------------------------------42
1.回收率------------------------------------------------------------------------------42
2.魚肉標準參考物質(SRM)之比較結果--------------------------------------------------------42
(三)最低檢測極限(LOD)和定量極限(LOQ)---------------------------------------------------------43
三、市售水產品的汞含量-------------------------------------------------------------------------43
(一) 迴游性大型魚類-------------------------------------------------------------------------43
(二)中小型魚類------------------------------------------------------------------------------46
(三)淡水養殖水產品---------------------------------------------------------------------------48
(四) )市售魚類加工製品-----------------------------------------------------------------------48
四、市售水產品汞含量之風險評估------------------------------------------- ------------------------52
(一)魚類之汞與甲基汞-------------------------------------------------------------------------52
(二)國人每週特定魚類容許攝取量-----------------------------------------------------------------53
(三)國人每日攝入魚肉汞之風險百分比--------------------------------------------------------------54
(四)國人每日可攝入魚肉含汞濃度之推估------------------------------------------------------------55
伍、結論------------------------------------------------------------------------------------------57
陸、參考文獻---------------------------------------------------------------------------------------58
柒、表--------------------------------------------------------------------------------------------82
捌、圖--------------------------------------------------------------------------------------------97

中華民國對外漁業合作發展協會。2012。中華民國一百年度台灣地區遠洋鮪延繩釣漁業漁獲統計年報。取自https://www.ofdc.org.tw/components/Editor/webs/files/mag_statistics/tuna_2009_2011.pdf
行政院農委會漁業署。2012。中華民國100年中華民國台閩地區漁業統計年報。漁業署。高雄。
行政院衛生福利部。2013。水產動物類衛生標準。102.8.20部授食字第1021350146號令修正。
行政院衛生福利部。2013。食品中甲基汞檢驗方法(二)。102.9.6部授食字第1021950329號公告。
行政院衛生福利部。2013。食用油脂中重金屬檢驗方法-汞之檢驗。102.9.6部授食字第1021950329號公告。
行政院衛生福利部。2013。重金屬檢驗方法總則。102.9.6部授食字第1021950329號公告。
行政院環境保護署。2011。魚介類甲基汞檢測方法。100.12.14環署檢字第1000109874號公告。
行政院環境保護署。2012。重金屬檢測方法總則。101.6.29環署檢1010055196號公告。
李信賢。2010。印度洋賽席爾群島海域黃鰭鮪汞濃度蓄積之研究。國立中山大學海洋生物科技暨資源學系研究所碩士論文。高雄市。
林新花、羅有雄。2003。樣品處理方法對測定汞的影響。廣東微量元素科學。10(3), 57-60。
施如佳、陳石松、張美華、邱雅琦、陳怡如、鄭秋真、周薰修。2006。台灣地區市售海洋魚類重金屬含量分析方法探討及資料之建立。 Ann Rept.BFDA Taiwan R.O.C.24。401-420。
高靜、張正江。2012。高壓消解-原子螢光光譜儀測定食物中的汞。檢驗臨床醫學。9(17), 2158。
國立台灣大學公共衛生學院健康風險及政策評估中心。2008。台灣一般民眾暴露參數彙編。
張欣華。2004。新竹香山地區沉積物與牡蠣汞之時序與空間變化。臺灣大學海洋研究所碩士論文。台北市。
許芬聖。2002。鬼頭刀體內汞蓄積之研究。國立中山大學海洋資源研究所碩士論文, 高雄市。
陳石松。2004。魚類中有機汞物種和重金屬暨貝類中有機錫物種和重金屬之含量檢測。國立台灣海洋大學食品科學研究所博士學位論文。基隆市。
陳怡君。2009。台灣民眾飲食性汞攝入與髮汞之相關性研究。國立中山大學海洋生物科技暨資源學系研究所博士論文。高雄市。
黃慧雅。2011。後勁溪水體、底泥及吳郭魚重金屬濃度之調查。國立高雄海洋科技大學海洋環境工程研究所碩士論文。高雄市。
傅淑英。2013。基隆市售魚產品之重金屬含量調查。國立海洋大學食品科學系碩士論文。基隆市。
彭庭俊。2008。頭前溪流域重金屬污染與出海口魚體重金屬殘留之調查。國立海洋大學食品科學系碩士論文。基隆市。
曾政鴻。1996。臺中港魚市魚貨重金屬含量之調查.。臺灣營養學會雜誌, 21(2), 177-188。
楊娟芬、任飛、金婉芳、許迪明。2008。微波消解-冷原子吸收光譜法測定食品中汞的討論。光譜實驗室。25(2), 65-66。
雲無心。2012。達人解讀︰奶粉汞異常事件。2012。from http://health.msn.com.cn/food/20120806/09391447311.shtml
鄧培妤。2010。大西洋和印度洋大目鮪肌肉中總汞及有機汞濃度的研究。國立中山大學海洋生物科技暨資源學系研究所碩士論文。高雄市。
賴建成。2009。太平洋長鰭鮪及大目鮪白色肌肉中總汞與有機汞蓄積之研究。國立中山大學海洋生物科技暨資源學系研究所碩士論文。高雄市。
Adams, D. H. (2009). Consistently low mercury concentrations in dolphinfish, Coryphaena hippurus, an oceanic pelagic predator. Environmental Research, 109(6), 697-701.
Al-Batanony, M. A., Abdel-Rasul, G. M., Abu-Salem, M. A., Al-Dalatony, M. M., & Allam, H. K. (2013). Occupational exposure to mercury among workers in a fluorescent lamp factory, Quisna Industrial Zone, Egypt. International Journal of Occupational Medicine , 4(3), 149-156.
Alabdali, A., Al-Ayadhi, L., & El-Ansary, A. (2014). A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behavioral and Brain Functions , 10, 14. doi: 10.1186/1744-9081-10-14
Amlund, H., Lundebye, A. K., & Berntssen, M. H. (2007). Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure. Aquatic Toxicology , 83(4), 323-330.
Aschner, M., & Aschner, J. L. (1990). Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neuroscience & Biobehavioral Reviews, 14(2), 169-176.
Ashoka, S., Peake, B. M., Bremner, G., Hageman, K. J., & Reid, M. R. (2009). Comparison of digestion methods for ICP-MS determination of trace elements in fish tissues. Analytica Chimica Acta, 653(2), 191-199.
Atwell, Lisa, Hobson, Keith A., & Welch, Harold E. (1998). Biomagnification and bioaccumulation of mercury in an arctic marine food web: Insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55(5), 1114-1121.
Austin, D. W., Shandley, K. A., & Palombo, E. A. (2010). Mercury in vaccines from the Australian childhood immunization program schedule. Journal of Toxicology and Environmental Health, part A, 73(10), 637-640.
Bachanek, T., Staroslawska, E., Wolanska, E., & Jarmolinska, K. (2000). Heavy metal poisoning in glass worker characterised by severe. Annals of Agricultural and Environmental Medicine, 7(1), 51-53.
Berlin, M. (2003). Mercury in dental-filling materials- an updated risk analysis in environmental medical terms An overview of scientific literature published in 1997–2002 and current knowledge. Paper presented at the The Dental Material Commission –Care and Consideration. Estocolmo, Suecia.
Bernhoft, R. A. (2012). Mercury toxicity and treatment: a review of the literature. Journal of Environmental and Public Health , 2012, 460508.
Beutel, M., Dent, S., Reed, B., Marshall, P., Gebremariam, S., Moore, B., . . . Shallenberger, E. (2014). Effects of hypolimnetic oxygen addition on mercury bioaccumulation in Twin Lakes, Washington, USA. Science of the Total Environment. doi: 10.1016/j.scitotenv.2014.06.117
Bowles, Karl C., Apte, Simon C., Maher, William A., Kawei, Matthew, & Smith, Ross. (2001). Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Canadian Journal of Fisheries and Aquatic Sciences, 58(5), 888-897.
Canada, Health. (2010). Canadian Standards (“Maximum Limits”) for Various Chemical Contaminants in Foods., Retrieved from: http://www.hc-sc.gc.ca/fn-an/securit/chem-chim/contaminants-guidelines-directives-eng.php#guidelines.
Carvalho, C. M., Lu, J., Zhang, X., Arner, E. S., & Holmgren, A. (2011). Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. Federation of American Societies for Experimental Biology Journal , 25(1), 370-381.
Centre for Food Safety of Hong Kong. (2010). Legislative Council Panel on Food Safety and Environmental Hygiene-The First Total Diet Study in Hong Kong.
Chen, C. Y., Lai, C. C., Chen, K. S., Hsu, C. C., Hung, C. C., & Chen, M. H. (2014). Total and organic mercury concentrations in the muscles of Pacific albacore (Thunnus alalunga) and bigeye tuna (Thunnus obesus). Marine Pollution Bulletin. doi: 10.1016/j.marpolbul.2014.01.039
China National Center For Food Safety Risk Assessment(CN CFSA), 2012, GB2762-2012 食品中污染物限量.
Cho, J. H., Eom, Y., Park, J. M., Lee, S. B., Hong, J. H., & Lee, T. G. (2013). Mercury leaching characteristics of waste treatment residues generated from various sources in Korea. Waste Management, 33(7), 1675-1681.
Choi, H. M. (2014). Methyl mercury uptake by the gills of Sacramento blackfish (Orthodon microlepidotus). Retrieved from: http://fishphysiology.org/wp-content/uploads/2014/02/choi.pdf
Choy, C. A., Popp, B. N., Kaneko, J. J., & Drazen, J. C. (2009). The influence of depth on mercury levels in pelagic fishes and their prey. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 13865-13869.
Clayden, M. G., Kidd, K. A., Wyn, B., Kirk, J. L., Muir, D. C., & O'Driscoll, N. J. (2013). Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environmental Science & Technology, 47(21), 12047-12053.
CODEX. (1995). CODEX general standard for contaminants and toxins in food and feed CODEX STAN 193-1995 (pp. 44): CODEX.
Dabeka, R. W., McKenzie, A. D., & Forsyth, D. S. (2014). Total mercury in canned tuna sold in Canada in 2006. Food Additives and Contaminants: Part B Surveillance, 7(2), 110-114.
Demirel, S., Tuzen, M., Saracoglu, S., & Soylak, M. (2008). Evaluation of various digestion procedures for trace element contents of some food materials. Journal of Hazardous Materials , 152(3), 1020-1026.
Dietz, R., Riget, F., & Johansen, P. (1996). Lead, cadmium, mercury and selenium in Greenland marine animals. Science of the Total Environment, 186(1–2), 67-93.
Dorea, J. G. (2006). Fish meal in animal feed and human exposure to persistent bioaccumulative and toxic substances.Journal of Food Protection, 69(11), 2777-2785.
Dufault, R., LeBlanc, B., Schnoll, R., Cornett, C., Schweitzer, L., Wallinga, D., Hightower, J., Patrick L., Lukiw, W. J. (2009). Mercury from chlor-alkali plants: measured concentrations in food product sugar. Environmental Health, 8, 2.
Eagles-Smith, C. A., & Ackerman, J. T. (2014). Mercury bioaccumulation in estuarine wetland fishes: Evaluating habitats and risk to coastal wildlife. Environmental Pollution , 193C, 147-155.
EFSA (2008). Mercury as undesirable substance in animal feed- Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA Journal , 654, 1-76.
Entwisle, J. (2004). Determination of Mercury in Microwave Digests of Foodstuffs by ICP-MS, Retrived from : https://www.chem.agilent.com/Library/applications/5989-0027EN.pdf
Eisler, R. (2004). Mercury hazards from gold mining to humans, plants, and animals.Reviews of Environmental Contamination and Toxicology , 181, 139-198.
Ekinci, M., Ceylan, E., Keles, S., Cagatay, H. H., Apil, A., Tanyildiz, B., & Uludag, G. (2014). Toxic effects of chronic mercury exposure on the retinal nerve fiber layer and macular and choroidal thickness in industrial mercury battery workers. Medical Science Monitor, 20, 1284-1290.
Ernst, E., & Thompson Coon, J. (2001). Heavy metals in traditional Chinese medicines: a systematic review. Clinical Pharmacology & Therapeutics, 70(6), 497-504.
Union European(EU). (2008). Commission Regulation (EC) No 629/2008. Official Journal of the European Union.
Farina, M., Aschner, M., & Rocha, J. B. (2011). Oxidative stress in MeHg-induced neurotoxicity. Toxicology and Applied Pharmacology, 256(3), 405-417.
Fernández, Z. H., Valcárcel Rojas, L. A., Álvarez, A. M., Estevez Álvarez, J. R., Araújo dos Santos Júnior, J., González, I. P., Gonzáleza, M. R., Maciasa, N. A., Sáncheza, D. L., Torres, D. H. (2014). Application of Cold Vapor-Atomic Absorption (CVAAS) Spectrophotometry and Inductively Coupled Plasma-Atomic Emission Spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control(0). doi: http://dx.doi.org/10.1016/j.foodcont.2014.05.056
Food Standards Australia New Zealand(FSANZ). (2014). Australia New Zealand Food Standards Code - Standard 1.4.1 - Contaminants and Natural Toxicants.
Franco, J. L., Posser, T., Dunkley, P. R., Dickson, P. W., Mattos, J. J., Martins, R., Bainy, A. C., Marques, M. R., Dafre, A. L., Farina, M. (2009). Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radical Biology & Medicine, 47(4), 449-457.
Frederick, P. C., Hylton, B., Heath, J. A., & Spalding, M. G. (2004). A historical record of mercury contamination in Southern Florida (USA) as inferred from avian feather tissue. Environmental Toxicology and Chemistry, 23(6), 1474-1478.
Frederick, P., & Jayasena, N. (2011). Altered pairing behaviour and reproductive success in white ibises exposed to environmentally relevant concentrations of methylmercury. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1851-1857.
Friedmann, Andrew S., Watzinb, Mary C., Brinck-Johnsen, Truls, & Leiter, James C. (1996). Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum), Aquatic Toxicology, 35(3), 265–278.
Geier, D. A., Hooker, B. S., Kern, J. K., King, P. G., Sykes, L. K., & Geier, M. R. (2013). A two-phase study evaluating the relationship between Thimerosal-containing vaccine administration and the risk for an autism spectrum disorder diagnosis in the United States. Translational Neurodegeneration, 2(1), 25.
Geier, D. A., King, P. G., & Geier, M. R. (2009). Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds. Toxicological & Environmental Chemistry, 91(4), 735-749.
Harris, R., Pollman, C., Landing, W., Evans, D., Axelrad, D., Hutchinson, D., Morey, S. L., Rumbold, D.,Dukhovskoy, D., Adams, D. H, Vijayaraghavan, K.,Holmes, C., Atkinson, R. D., Myers, T., Sunderland, E. (2012). Mercury in the Gulf of Mexico: sources to receptors. Environmental Research, 119, 42-52.
Head, J. A., DeBofsky, A., Hinshaw, J., & Basu, N. (2011). Retrospective analysis of mercury content in feathers of birds collected from the state of Michigan (1895-2007). Ecotoxicology, 20(7), 1636-1643.
Hight, Susan C., & Cheng, John. (2006). Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS): Method development and validation. Analytica Chimica Acta, 567(2), 160-172.
Hodgson, N. W., Waly, M. I., Al-Farsi, Y. M., Al-Sharbati, M. M., Al-Farsi, O., Ali, A., Ouhtit A., Zang T., Zhou Z. S., Deth R. C. (2014). Decreased glutathione and elevated hair mercury levels are associated with nutritional deficiency-based autism in Oman. Experimental Biology and Medicine (Maywood), 239(6), 697-706.
Hsi, H. C., Lee, H. H., Hwang, J. F., & Chen, W. (2010). Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals. Journal of the Air & Waste Management Association, 60(5), 514-522.
Hunter, Rod, & Muylle., Koen J. (1999). European Community deskbook. Washington, D.C. : Environmental Law Institute.
Hylander, L. D., & Meili, M. (2003). 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Science of the Total Environment, 304(1-3), 13-27.
Ibrahim, D., Froberg, B., Wolf, A., & Rusyniak, D. E. (2006). Heavy metal poisoning: clinical presentations and pathophysiology. Clinics in Laboratory Medicine, 26(1), 67-97, viii.
Jian, L., Goessler, W., & Irgolic, K. J. (2000). Mercury determination with ICP-MS: signal suppression by acids. Fresenius' Journal of Analytical Chemistry, 366(1), 48-53.
Kannan, K., Smith, R. G. , Lee, R. F. , Windom, H. L., Heitmuller, P. T. , Macauley, J. M., & Summers, J. K. (1998). Distribution of Total Mercury and Methyl Mercury in Water, Sediment, and Fish
from South Florida Estuaries, Archives of Environmental Contamination and Toxicology, .34, 10.
Kelly, C. A., Rudd, John W. M., & Holoka, M. H. (2003). Effect of pH on Mercury Uptake by an Aquatic Bacterium: Implications for Hg Cycling. Environmental Science & Technology, 37, 2941-2946.
Kim, M. K., & Zoh, K. D. (2012). Fate and transport of mercury in environmental media and human exposure. Journal of Preventive Medicine and Public Health, 45(6), 335-343.
Kim, N. Y., Ahn, S. J., Ryu, D. Y., Choi, B. S., Kim, H., Yu, I. J., & Park, J. D. (2013). Effect of lifestyles on the blood mercury level in Korean adults. Human & Experimental Toxicology, 32(6), 591-599.
Koenig, S., Sole, M., Fernandez-Gomez, C., & Diez, S. (2013). New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications. Science of the Total Environment, 442, 329-335.
Krabbenhoft, D. P., Rickert, D. R. (1996). Mercury Contamination of Aquatic Ecosystems. The United States Forest Service (USFS) Fact Sheet, 216-295.
Kucak, A., & Blanusa, M. (1998). Validation of microwave digestion method for determination of trace metals in mushrooms. Arh Hig Rada Toksikol, 49(4), 335-342.
Lasrado, J. A., Santerre, C. R., Shim, S. M., & Stahl, J. R. (2005). Analysis of mercury in sportfish tissue by thermal decomposition, amalgamation/atomic absorption spectrophotometry.Journal of Food Protection, 68(4), 879-881.
Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., Campbell, L. M. (2013). Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis. Environmental Science & Technology, 47(23), 13385-13394.
Lee, C. W., Compton, R. G., Eklund, J. C., Waller, D. N. (1995). Mercury-electroplated platinum electrodes and microelectrodes for sonoelectrochemistry. Ultrasonics Sonochemistry, 2(1), S59-S62.
Lescord, G. L., Kidd, K. A., Kirk, J. L., O'Driscoll, N. J., Wang, X., & Muir, D. C. (2014). Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic. Science of the Total Environment. doi: 10.1016/j.scitotenv.2014.04.133
Levine, K. E., Fernando, R. A., Lang, M., Essader, A., Handy, R. W., & Collins, B. J. (2000). Development of a method for the determination of ultra-trace level mercury in adipose tissue by cold vapour atomic fluorescence spectrometry. Journal of Automated Methods and Management in Chemistry, 22(4), 103-108.
Li, M., Sherman, L. S., Blum, J. D., Grandjean, P., Mikkelsen, B., Weihe, P., Sunderland, E. M., Shine, J. P. (2014). Assessing Sources of Human Methylmercury Exposure Using Stable Mercury Isotopes. Environmental Science & Technology. doi: 10.1021/es500340r
Li, X., Yin, D., Yin, J., Chen, Q., & Wang, R. (2014). Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. Food and Chemical Toxicology. doi: 10.1016/j.fct.2014.07.023
Lin, Y. S., Ginsberg, G., Caffrey, J. L., Xue, J., Vulimiri, S. V., Nath, R. G., & Sonawane, B. (2014). Association of body burden of mercury with liver function test status in the U.S. population. Environment International, 70, 88-94.
Lincoln, R. A., Shine, J. P., Chesney, E. J., Vorhees, D. J., Grandjean, P., & Senn, D. B. (2011). Fish consumption and mercury exposure among Louisiana recreational anglers. Environmental Health Perspect, 119(2), 245-251.
Liu, J., Shi, J. Z., Yu, L. M., Goyer, R. A., & Waalkes, M. P. (2008). Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials? Experimental Biology and Medicine (Maywood), 233(7), 810-817.
Liu, J., Xu, X., Yu, S., Cheng, H., Hong, Y., & Feng, X. (2014). Mercury pollution in fish from South China Sea: levels, species-specific accumulation, and possible sources. Environmental Research, 131, 160-164.
Lo, J. M., & Sakamoto, H. (2005). Comparison of the acid combinations in microwave-assisted digestion of marine sediments for heavy metal analyses. Analytical Sciences, 21(10), 1181-1184.
Low, F., & Zhang, L. (2012). Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES. Talanta, 101, 346-352.
Lucchini, R., Cortesi, I., Facco, P., Benedetti, L., Camerino, D., Carta, P., Urbano, M. L., Zaccheo, A., Alessio, L. (2002). Neurotoxic effect of exposure to low doses of mercury. Medicina del Lavoro, 93(3), 202-214.
Mahajan, V. E., Yadav, R. R., Dakshinkar, N. P., Dhoot, V. M., Bhojane, G. R., Naik, M. K., Shrivastava P, Naoghare PK, Krishnamurthi K. (2012). Influence of mercury from fly ash on cattle reared nearby thermal power plant. Environmental Monitoring and Assessment, 184(12), 7365-7372.
Mania, M., Wojciechowska-Mazurek, M., Starska, K., Rebeniak, M., & Postupolski, J. (2012). Fish and seafood as a source of human exposure to methylmercury. Roczniki Panstwowego Zakladu Higieny, 63(3), 257-264.
Martins, C., Vasco, E., Paixao, E., & Alvito, P. (2013). Total mercury in infant food, occurrence and exposure assessment in Portugal. Food Additives and Contaminants: Part B Surveillance, 6(3), 151-157.
McCarthy, H. T., & Ellis, P. C. (1991). Comparison of microwave digestion with conventional wet ashing and dry ashing digestion for analysis of lead, cadmium, chromium, copper, and zinc in shellfish by flame atomic absorption spectroscopy. Journal of the Association of Official Analytical Chemists, 74(3), 566-569.
Meij, R., Vredenbregt, L. H., & te Winkel, H. (2002). The fate and behavior of mercury in coal-fired power plants. Journal of the Air & Waste Management Association, 52(8), 912-917.
Ministry of Health, Labour and Welfare, Japan[JP MHLW]. (2003). 各国の水銀の規制値. from http://www.mhlw.go.jp/shingi/2003/06/s0603-4a.html
Ministry of Health, Labour and Welfare, Japan[JP MHLW]. (2011). 国民一人一日当たり魚介類と肉類の摂取量の推移, 厚生労働省)、「国民健康・栄養調査報告」2003~2010.
Miettinen, J.K. Absorption and elimination of dietary mercury(2+) ion and methylmercury in man. In: Miller M.W, Clarkson T.W., eds. Mercury, Mercurials, and Mercaptans. Proceedings 4th International Conference on Environmental Toxicology. New York: Plenum Press; 1973.
Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China(SAC), 2003, GB/T 5009.17-2003 食品中总汞及有机汞的测定.
Mitkus, R. J., King, D. B., Walderhaug, M. O., & Forshee, R. A. (2014). A comparative pharmacokinetic estimate of mercury in U.S. Infants following yearly exposures to inactivated influenza vaccines containing thimerosal. Risk Analysis, 34(4), 735-750.
Muir, D., Braune, B., DeMarch, B., Norstrom, R., Wagemann, R., Lockhart, L., Hargrave, B., Bright, D., Addison, R. ,Payne, J., Reimer, K. (1999). Spatial and temporal trends and effects of contaminants in the Canadian Arctic marine ecosystem: a review. Science of the Total Environment, 230(1–3), 83-144.
Muran, P. J. (2006). Mercury elimination with oral DMPS, DMSA, vitamin C, and glutathione: an observational clinical review. Alternative Therapies In Health And Medicine, 12(3), 70-75.
Mutter, J., Naumann, J., Walach, H., & Daschner, F. (2005). Amalgam: Eine Risikobewertung unter Berücksichtigung der neuen Literatur bis 2005. [Amalgam Risk Assessment with Coverage of References up to 2005]. Gesundheitswesen, 67(03), 204-216.
Nakagawa, Ryozo, Yumita, Yukie, & Hiromoto, Masami. (1997). Total mercury intake from fish and shellfish by Japanese people. Chemosphere, 35(12), 2909-2913.
Newman, J., Zillioux, E., Rich, E., Liang, L., & Newman, C. (2005). Historical and other patterns of monomethyl and inorganic mercury in the Florida panther (Puma concolor coryi). Archives of Environmental Contamination and Toxicology, 48(1), 75-80.
Nortje, J. (2002). Determination of Total Mercury in Fish and Biological Tissue Using a Direct Mercury Analyzer. from:http://www.americanlaboratory.com/914-Application-Notes/502-Determination-of-Total-Mercury-in-Fish-and-Biological-Tissue-Using-a-Direct-Mercury-Analyzer/.
Odsjo, T., Bignert, A., Olsson, M., Asplund, L., Eriksson, U., Haggberg, L., Litzén, K., de Wit, C., Rappe C, Aslund K. (1997). The Swedish Environmental Specimen Bank--application in trend monitoring of mercury and some organohalogenated compounds. Chemosphere, 34(9-10), 2059-2066.
Odumo, B. O., Carbonell, G., Angeyo, H. K., Patel, J. P., Torrijos, M., & Rodriguez Martin, J. A. (2014). Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya. Environmental science and pollution research international. doi: 10.1007/s11356-014-3190-3.
Olsvik, P. A., Amlund, H., Saele, O., Ellingsen, S., & Skjaerven, K. H. (2014). Impact of dietary selenium on methylmercury toxicity in juvenile Atlantic cod: A transcriptional survey. Chemosphere, 120C, 199-205.
Park, J. S., Jung, S. Y., Son, Y. J., Choi, S. J., Kim, M. S., Kim, J. G., Park, S. H., Lee, S. M., Chae, Y. Z., Kim, M. Y. (2011). Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea. Food Additives & Contaminants: Part B, 4(4), 268-274.
Passos, C. J., Da Silva, D. S., Lemire, M., Fillion, M., Guimaraes, J. R., Lucotte, M., & Mergler, D. (2008). Daily mercury intake in fish-eating populations in the Brazilian Amazon. journal of exposure science and environmental epidemiology, 18(1), 76-87.
Patrick, L. (2002). Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Alternative medicine review, 7(6), 456-471.
Pearson, G. F. (2007). Direct Mercury Analysis in Solid and Liquid Samples. Retrieved from: www.quantitech.co.uk/images/gphydracpaper.pdf
Pfeil, D. (2011). Measurement Techniques for Mercury: Which Approach is Right for You? Retrieved from: www.envirotech-online.com
Rasmussen, R. S., & Morrissey, M. T. (2007). Effects of canning on total mercury, protein, lipid, and moisture content in troll-caught albacore tuna (Thunnus alalunga). Food Chemistry, 101(3), 1130-1135.
Ritchie, K, Gilmour, W, Macdonald, E, Burke, F, McGowan, D, Dale, I, . . . Collington, D. (2002). Health and neuropsychological functioning of dentists exposed to mercury. Occupational and Environmental Medicine, 59(5), 287-293.
Ritchie, K. A., Burke, F. J., Gilmour, W. H., Macdonald, E. B., Dale, I. M., Hamilton, R. M., McGowan, D. A., Binnie, V, Collington, D, Hammersley, R. (2004). Mercury vapour levels in dental practices and body mercury levels of dentists and controls. British Dental Journal, 197(10), 625-632; discussion 621.
Rodrigues, M. V., Yamatogi, R. S., Sudano, M. J., Galvao, J. A., de Perez, A. C., & Biondi, G. F. (2013). Mercury concentrations in South Atlantic swordfish, Xiphias gladius, caught off the coast of Brazil. Bulletin of Environmental Contamination and Toxicology, 90(6), 697-701.
Rooney, J. P. (2007). The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology, 234(3), 145-156.
Rudd, J. W., Furutani, A., & Turner, M. A. (1980). Mercury methylation by fish intestinal contents. Applied and Environmental Microbiology, 40(4), 777-782.
Saniewska, D., Beldowska, M., Beldowski, J., Saniewski, M., Szubska, M., Romanowski, A., & Falkowska, L. (2014). The impact of land use and season on the riverine transport of mercury into the marine coastal zone. Environmental Monitoring and Assessment. doi: 10.1007/s10661-014-3950-z
Schaefer, A. M., Jensen, E. L., Bossart, G. D., & Reif, J. S. (2014). Hair mercury concentrations and fish consumption patterns in Florida residents. International Journal of Environmental Research and Public Health, 11(7), 6709-6726.
Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36(1), 12-18.
Schoenfuss, T. C., Metz, Z. P., Pataky, A. E., & Schoenfuss, H. L. (2014). Technical note: The equivalency of sodium results in cheese digested by either dry ashing or microwave-accelerated digestion. Journal of Dairy Science, 97(2), 710-714.
Sharma, C. M., Borgstrom, R., Huitfeldt, J. S., & Rosseland, B. O. (2008). Selective exploitation of large pike Esox lucius--effects on mercury concentrations in fish populations. Science of the Total Environment, 399(1-3), 33-40.
Shim, S. M., Dorworth, L. E., Lasrado, J. A., & Santerre, C. R. (2004). Mercury and fatty acids in canned tuna, salmon, and mackerel. Journal of Food Science, 69(9), C681–C684.
St Louis, V. L., Sharp, M. J., Steffen, A., May, A., Barker, J., Kirk, J. L., Kelly, D. J., Arnott, S. E., Keatley, B., Smol, J. P. (2005). Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic. Environmental Science & Technology, 39(8), 2686-2701.
Stemp-Morlock, G. (2008). Mercury: Cleanup for Broken CFLs. Environmental Health Perspect, 116(9), A378.
Sun, D. H., Waters, J. K., & Mawhinney, T. P. (2000). Determination of thirteen common elements in food samples by inductively coupled plasma atomic emission spectrometry: comparison of five digestion methods. Journal of AOAC International, 83(5), 1218-1224.
Tomiyasu, TakaShi, Nagano, Ayako, Sakamoto, Hayao, & Yonehara, Norinobu. (1996). Differential Mercury in Cold-Vapor Determination of Organic Mercury and Inorganic Sediment, Soil and Aquatic Organisms by Cold-vapor Atom Absorption Spectrometry. Analytical sciences, 12.
Torres, D. P., Martins-Teixeira, M. B., Silva, E. F., & Queiroz, H. M. (2012). Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS). Food Additives & Contaminants Part A Chem Anal Control Expo Risk Assess, 29(4), 625-632.
Torres, Z., Mora, M. A., Taylor, R. J., Alvarez-Bernal, D., Buelna, H. R., & Hyodo, A. (2014). Accumulation and hazard assessment of mercury to waterbirds at Lake Chapala, Mexico. Environmental Science & Technology, 48(11), 6359-6365.
Tsuchiya, A., Hinners, T. A., Krogstad, F., White, J. W., Burbacher, T. M., Faustman, E. M., & Marien, K. (2009). Longitudinal mercury monitoring within the Japanese and Korean communities (United States): implications for exposure determination and public health protection. Environmental Health Perspect, 117(11), 1760-1766.
Tunnessen, W. W., Jr., McMahon, K. J., & Baser, M. (1987). Acrodynia: exposure to mercury from fluorescent light bulbs. Pediatrics, 79(5), 786-789.
US Food and Drug Administration (US FDA). (2007). CPG Sec. 540.600 Fish, Shellfish, Crustaceans and other Aquatic Animals - Fresh, Frozen or Processed - Methyl Mercury Rerived from: http://www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm074510.htm
US Food and Drug Administration (US FDA). (2010).Federal Food, Drug, and Cosmetic Act (FD&C Act) Sec. 406
US Food and Drug Administration (US FDA). (2014). Mercury Concentrations in Fish: FDA Monitoring Program.
US Environmental Protection Agency (US EPA). (1994a). Method 200.8 Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry, Rerived from: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_200_8.pdf
US Environmental Protection Agency (US EPA). (1994b). Method 7470A. Mercury in liquid waste (manual cold-vapor technique), Rerived from: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7470a.pdf
US Environmental Protection Agency (US EPA). (2001a). Fact Sheet Mercury Update: Impact on Fish Advisories. Retrived from: http://water.epa.gov/scitech/swguidance/fishshellfish/outreach/upload/2001_05_31_fish_advice_mercupd.pdf
US Environmental Protection Agency (US EPA). (2001b). Water Quality Criterion for the Protection of Human Health: Methylmercury, EPA-823-R-01-001 .
US Environmental Protection Agency (US EPA). (2003). CSFII Analysis of Food Intake Distributions (pp. 175). Washington, DC 20460: National Center for Environmental Assessment.
US Environmental Protection Agency (US EPA). (2005). Method 245.7 Mercury in water by Cold Vapor Atomic Fluorescence Spectrometry., Rerived from: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_245_7.pdf.
US Environmental Protection Agency (US EPA). (2007a). Method 1631 Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, Rerived from: http://water.epa.gov/scitech/methods/cwa/metals/mercury/upload/2007_07_10_methods_method_mercury_1631.pdf.
US Environmental Protection Agency (US EPA). (2007b). Method 200.8 Determination of trace elements in waters and wastes by inductively coupled plasma - mass spectrometry. Rerived from: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_200_8.pdf.
US Environmental Protection Agency (US EPA). (2007). Method 7471B
Mercury in solid or semisolid waste (manual cold-vapor technique) , Rerived from: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/7471b.pdf
US Environmental Protection Agency (US EPA). (2011). Exposure Factors Handbook , Retrieved from: www.epa.gov/ncea/efh/pdfs/efh-complete.pdf.
US Environmental Protection Agency (US EPA). (2012). EPA's Integrated Risk Information System Program Progress Report and Report to Congress. 29.
United Nations Environment Programme (UNEP).(2013). Global Mercury Assessment 2013, Retrived from: http://www.unep.org/PDF/PressReleases/GlobalMercuryAssessment2013.pdf.
Velyka, AIa, Pshak, V. P., & Lopushins'ka, I. V. (2014). Activity of antioxidant enzymes of the rat kidneys under mercury dichloride effect. Ukrainskii Biokhimicheskii Zhurnal, 86(1), 124-130.
Virtanen, J. K., Voutilainen, S., Rissanen, T. H., Mursu, J., Tuomainen, T. P., Korhonen, M. J., Valkonen, V. P., Seppänen, K., Laukkanen, J.A., Salonen, J. T. (2005). Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(1), 228-233.
Voegborlo, R. B., & Akagi, H. (2007). Determination of mercury in fish by cold vapour atomic absorption spectrometry using an automatic mercury analyzer. Food Chemistry, 100(2), 853-858.
Wagemann, R., Trebacz, E., Boila, G., & Lockhart, W. L. (1998). Methylmercury and total mercury in tissues of arctic marine mammals. Science of the Total Environment, 218(1), 19-31.
Wang, F., Macdonald, R. W., Armstrong, D. A., & Stern, G. A. (2012). Total and methylated mercury in the Beaufort Sea: the role of local and recent organic remineralization. Environmental Science & Technology, 46(21), 11821-11828.
Ward, D. M., Nislow, K. H., Chen, C. Y., & Folt, C. L. (2010). Rapid, efficient growth reduces mercury concentrations in stream-dwelling Atlantic salmon. Transactions of the American Fisheries Society, 139(1), 1-10.
Watanabe, N., Tayama, M., Inouye, M., & Yasutake, A. (2012). Distribution and chemical form of mercury in commercial fish tissues. Journal of Toxicological Sciences , 37(4), 853-861.
Wester, P. W., & Canton, H. H. (1992). Histopathological Effects in Poecilia reticulata (Guppy) Exposed to Methyl Mercury Chloride. Toxicologic Pathology, 20(1), 81-92.
Willett, Walter. (1998). Nutritional Epidemiology (Vol. 1998). New York: Oxford University Press.
Woshner, V. M., O'Hara, T. M., Bratton, G. R., & Beasley, V. R. (2001). Concentrations and interactions of selected essential and non-essential elements in ringed seals and polar bears of arctic alaska. Journal of Wildlife Diseases, 37(4), 711-721.
Yang, L., Li, Y. L., Guo, X. X., Ma, X. Q., & Yan, Q. H.,(2013). Comparison of dry ashing, wet ashing, and microwave digestion for determination of trace elements in periostracum serpentis and periostracum cicadae by ICP-AES. Journal of the Chilean Chemical Society, 58(3). 1876-1879.
Yess, N. J. (1993). U.S. Food and Drug Administration survey of methyl mercury in canned tuna. Journal of AOAC International, 76(1), 36-38.
You, C. H., Kim, B. G., Kim, Y. M., Lee, S. A., Kim, R. B., Seo, J. W., & Hong, Y. S. (2014). Relationship between dietary mercury intake and blood mercury level in Korea. Journal of Korean Medical Science, 29(2), 176-182.
Zolfaghari, G., Esmaili-Sari, A., Ghasempouri, S. M., & Faghihzadeh, S. (2007). Evaluation of environmental and occupational exposure to mercury among Iranian dentists. Science of the Total Environment, 381(1-3), 59-67.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔