跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/18 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃永男
研究生(外文):Yung-Nan Huang
論文名稱:質子交換膜燃料電池性能及電位場之數值模擬
論文名稱(外文):Numerical Simulation on the Performance and Electric Potential of the Proton Exchange Membrane Fuel Cells
指導教授:蔡錦山蔡錦山引用關係
指導教授(外文):Chin-Shan Tsai
口試委員:呂金生蔡錦山塗豐州
口試委員(外文):Chin-Shan Tsai Fong-Jou Tu
口試日期:2014-06-13
學位類別:碩士
校院名稱:南榮技術學院
系所名稱:工程科技研究所碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:74
中文關鍵詞:二維多物種傳輸蛇形指叉型質子交換膜電位場
外文關鍵詞:Two-Dimensional Numerical Model of Multi-Component Mixture TransportSerpentineInterdigitatedProton Exchange Membrane Fuel CellElectric Potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本文以二維多物種傳輸之數值模型,研究蛇形流道及指叉型流道結構對質子交換膜燃料電池性能及電位場分佈的影響。分析範圍包括陽極、質子交換膜及陰極,所使用之統御方程式為質量守恆方程式、動量守恆方程式、物種守恆方程式及電荷守恆方程式,以有限元素軟體COMSOL Multiphysics求數值解,研究不同雙極板流道結構、燃料電池操作參數及質子交換膜物理性質,對質子交換膜燃料電池性能、電位場、氣體擴散層中之壓力場、速度場及各反應物分佈情形的影響。在本研究中所模擬之質子交換膜燃料電池,其幾何尺寸分別為:薄膜厚度0.1mm、觸媒層厚度0.01mm、氣體擴散層厚度0.25mm;而蛇形流道之流道模擬長度為2mm,指叉型流道之反應氣體流道寬度及流道板肋部寬度則皆為0.5mm。
由數值模擬之結果發現,指叉型流道質子交換膜燃料電池之性能優於蛇形流道;而各流道結構之燃料電池其傳輸機制主要受對流效應所影響。在質子交換膜燃料電池中,主要之電壓降發生在質子交換膜內;陽極、陰極中之歐姆損失並不明顯;而較高之過電位則出現在陰極。各燃料電池之陽極氫氣質量分率隨著流動方向而升高,陰極之氧氣質量分率則隨著流動方向而降低;陽極水蒸汽質量分率隨著流動方向而降低,而陰極水蒸汽質量分率則隨著流動方向而升高。在低電流密度時,流道結構、質子交換膜物理性質及燃料電池操作條件等參數,對燃料電池性能之影響不大;在高電流密度時,提高陽極及陰極入口處之反應氣體壓力、增加多孔性材質之孔隙率、增加電解質及雙極板之導電率、降低燃料電池操作溫度、減少多孔性材質之彎曲度皆可明顯提升燃料電池之性能。

A numerical simulation is used to investigate the performance and electric potential distribution in a proton exchange membrane fuel cell (PEMFC) with serpentine and interdigitated flow fields. A two-dimensional numerical model of multi-component mixture transport is presented and implemented in COMSOL Multiphysics. The modeled section of the PEMFC consists of an anode, a proton exchange membrane, and a cathode. The numerical model contains the conservation of mass, momentum, species, and charge with electrochemical reactions. The parameters, such as bipolar plate structure, operation conditions of the fuel cell, and the physical properties of the proton exchange membrane, are used to study the affections on the performance, electric potential, pressure fields, velocity fields, and reactants distribution in a proton exchange membrane fuel cell. The simulation sizes of membrane thickness, active layer’s thickness, gas diffusion layer thickness, are 0.1 mm, 0.01 mm, and 0.25 mm, respectively. The simulation channel length of serpentine flow field is 2 mm, both the flow channel and the rib width of the interdigitated flow field are 0.5 mm.
The simulation results show that the performance of the PEMFC with interdigitated channel is better than serpentine channel. The convection transport mechanism dominates the mass distribution in the flow fields of the proton exchange membrane fuel cells. The major potential drop occurs across the membrane. The ohmic losses are very small on both the anode and cathode electrodes. A high overpotential is found on the cathode electrode. The hydrogen mass fraction in the anode increases and the oxygen mass fraction in the cathode decreases along the flow direction, respectively. The water mass fraction in the anode decreases and in the cathode increases along the flow direction, respectively. All the parameters, such as the bipolar plate flow channels structures, the physical properties of the proton exchange membrane, and the operation conditions of the fuel cells, have unapparent effects upon the fuel cell performance at low current densities. Increasing the reactants pressure at the inlets of the anode and the cathode, the porous material permeability, the porous material conductivity, and the bipolar plate conductivity, reducing the fuel cell operation temperature and the tortuosity of the porous media can improve the PEMFC performance at high current density.

中文摘要 ⅰ
英文摘要 ⅱ
誌謝 ⅳ
目錄 ⅴ
表目錄 ⅷ
圖目錄 ⅸ
符號說明 xi
第一章 緒論 1
第一節 研究動機 1
第二節 文獻回顧 2
第三節 燃料電池簡介 4
壹、燃料電池原理 4
貳、燃料電池之特點 5
参、燃料電池的種類 6
一、鹼性燃料電池 6
二、固態氧化物燃料電池 8
三、直接甲醇燃料電池 9
四、磷酸燃料電池 10
五、熔融碳酸鹽燃料電池 10
六、質子交換膜燃料電池 11
第四節 論文架構 15
第二章 質子交換膜燃料電池之模擬與分析 16
第一節 幾何形狀與尺寸 16
第二節 基本假設 17
第三節 統御方程式 17
壹、質量守恆方程式及動量守恆方程式 17
貳、物種守恆方程式 18
參、電荷守恆方程式 19
第四節 邊界條件 20
第五節 數值分析 21
第六節 數值分析之結論 22
第三章 影響質子交換膜燃料電池性能之參數探討 26
第一節 系統參數對質子交換膜氣體擴散層壓力場及速度場分佈之影響 26
壹、流道結構對質子交換膜氣體擴散層壓力場及速度場分佈之影響…..26
貳、燃料電池操作電壓對質子交換膜氣體擴散層壓力場及速度場分佈之
影響 26
參、反應氣體入口壓力對質子交換膜氣體擴散層壓力場及速度場分佈之
影響 26
肆、孔隙率對質子交換膜氣體擴散層壓力場及速度場分佈之影響 27
伍、操作溫度對質子交換膜氣體擴散層壓力場及速度場分佈之影響 27
陸、質子交換膜導電率對質子交換膜氣體擴散層壓力場及速度場分佈之
影響 27
柒、雙極板導電率對質子交換膜氣體擴散層壓力場及速度場分佈之影響
27
捌、彎曲度對質子交換膜氣體擴散層壓力場及速度場分佈之影響 27
玖、電滲阻力係數對質子交換膜氣體擴散層壓力場及速度場分佈之影響
27
拾、多孔性介質滲透性對質子交換膜氣體擴散層壓力場及速度場分佈之
影響 28

第二節 系統參數對氣體擴散層壓力場及速度場分佈影響模擬之結論 28
第三節 系統參數對質子交換膜燃料電池性能及電位場之影響 40
壹、流道結構對燃料電池性能之影響 40
貳、燃料電池操作電壓對燃料電池電位場之影響 40
參、反應氣體入口壓力對燃料電池性能及電位場之影響 40
肆、孔隙率對燃料電池性能及電位場之影響 41
伍、燃料電池操作溫度對燃料電池性能及電位場之影響 41
陸、質子交換膜導電率及雙極板導電率對燃料電池性能及電位場之影響
42
柒、彎曲度對燃料電池性能及電位場之影響 42
捌、電滲阻力係數對燃料電池性能及電位場之影響 42
玖、蛇形雙極板流道與指叉型雙極板流道之傳輸機制 43
拾、滲透性對燃料電池性能及電位場之影響 43
第四節 系統參數對質子交換膜燃料電池性能及電位場影響模擬之結論 43
第四章 結論與未來展望 69
第一節 結論 69
第二節 未來展望 70
參考文獻 71
發表論文 74

[1]黃鎮江,燃料電池,全華科技圖書股份有限公司,台北,(2004)。
[2]Bemardi, D. M., and Verbrugge, M. W., “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,” AIChEJ., Vol. 37, No. 8, pp. 1151-1163 (1991).
[3]Brinkman, H. W., Briels, W. J., and Verweij, H., “Molecular Dynamics Simulations of Yttria-Stabilzed Zirconia,” Chemical Physics Letters, Vol. 247, pp.386-390 (1995).
[4]Gurau, V., Liu, H., and Kakac, S., “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AIChE J., Vol. 44, No. 11, pp. 2410-2422 (1998).
[5]隋升,顧軍和李光強,「PEMFC 氧電極研究動向」,化學通報,第九頁(1999)。
[6]Philip, L., Barry J., Gary O., and Paul, L., “New materials for polymer electrolyte membrane fuel cell current collectors,” Journal of Power Source, Vol. 80, pp. 235-241 (1999).
[7]Hsing, I-M., and Futerko, P., “Two-dimensional Simulation of Water Transportation Polymer Electrolyte Fuel Cells,” Chemical Engineering Science, Vol. 55, pp. 4209-4218 (2000).
[8]Wensheng, He., Jung, S. Yi., and Trung ,V. N., “Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields,” AIChE Journal, Vol. 46, pp. 2053-2064 (2000).
[9]Berning, T., Lu, D. M., and Djilali, N., “Three Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,” Journal of Power Sources, Vol. 106, pp. 284-294 (2002).
[10]Sukkee, Um., and Wang, C. Y., “Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells,” Journal of Power Sources, Vol. 125, pp. 40-51 (2004).
[11]Yan, W. M., Soong , C. Y., Falin, C., and Chu, H. S., “Effects of Flow Distributor Geometry and Diffusion Layer Porosity on Reactant Gas Transport and Performance of Proton Exchange Membrane Fuel Cells,” Journal of Power Source, Vol. 125, pp. 27-39 (2004)
[12]衣寶廉,燃料電池原理與應用,五南書局,台北,(2005)。
[13]黃鎮江,綠色能源,全華科技圖書股份有限公司,台北,(2005)。
[14]取自:Fuel Cell Today http://www.fuelcelltoday.com/about-fuel-cells/technologies/pemfc
[15]肖鋼,燃料電池技術,全華科技圖書股份有限公司,台北,(2010)。
[16]Ju, H., Meng, H., and Wang, C. Y., “A Single-Phase, Non-Isothermal Model for PEM Fuel Cells,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 1303-1315, (2005).
[17]Yoon, Y. G., Lee, W. Y., Park, G. G., Yang, T. H., and Kim, C. S., “Effects of Channel Configurations of Flow Field Plates on the Performance of a PEMFC,” Electrochimica Acta, Vol. 50, pp. 709-712 (2004).
[18]He, W., Yi, J. S., and Nguyen, T., “Two-Phase Flow Model of the Cathode of PEM Fuel Cell Using Interdigitated Flow Fields,” AIChE J., vol. 46(10), pp. 2053-2064 (2000).
[19]Wilson, M. S., Springer, T. E., Davey, J., and Gottesfeld, S., “Alternative Flow-Field and Backing Concepts for Polymer Electrolyte Membrane Fuel Cells,” Electrochemical Soc. Proc. Ed., Vol. 95-23, pp. 115-126 (1995).
[20]Squadrito, G., Barbera, O., Gatto, I., Giacoppo, G., Urbani, F., and Passalacqua, E., “CFD Analysis of the Flow Field Scale-Up Influence on the Electrodes Performance in a PEFC,” Journal of Power Sources, Vol. 152, pp. 67-74 (2005).
[21]Springer, T. E., Zawodzinske, T.A., and Gatteadold, S., “Polymer Electrolyte Fuel Cell Model,” Journal of Electrochem Soc, Vol. 138, pp. 2334-2342 ( 2000).
[22]Biyikoglu, A., “Review of Proton Exchange Membrane Fuel Cell Models,” International Journal of Hydrogen Energy, Vol. 30, pp. 1181-1212 (2007).
[23]Grujicic, M., and Chittajallu, K. M., “Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cells,” Applied Surface Science, Vol. 227, pp. 56-72 (2004).
[24]Hentall, P. L., Lakeman, J. B., Mepsted, G. O., Adcock, P.L., and Moore, J. M., “New Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors,” Journal of Power Sources, Vol. 80, pp. 235-241 (1999).
[25]Nelson, D. J., and Spakovsky, M. R., “Single Domain PEMFC Model Based on Siegel Agglomerate Catalyst Geometry,” Journal of Power Sources, Vol. 115, pp. 81-89 (2003).
[26]鄭煜騰和鄭耀宗,「質子交換膜型燃料電池的製造技術」,能源季刊,第27卷,第2期,第118頁(1997)。
[27]黃鎮江,燃料電池修訂版,全華科技圖書股份有限公司,台北,(2005)。
[28]取自:大紀元 科技專題http://www.epochtw.com/6/12/7/42672.htm
[29]取自:http://www.soleenergy.com.tw/knowledge/battery.pdf
[30]Appleby, A. J., and Folkes, F. R., “Fuel Cell Handbook,” Van Nostrand einhold,New York, (1989).
[31]Kordesch, K., and Simader, G., “Fuel cells and their applications,” VCH, New York, pp. 51-179,(1996).
[32]取自:大紀元 科技專題http://www.epochtw.com/6/12/7/42672.htm
[33]取自:大紀元 燃料電池演進http://www.epochtimes.com/b5/6/12/4/n1544048.htm
[34]周紹文,「二次鋰電池產品可靠度試驗之研究」,碩士論文,華梵大學工業工程與經營資訊學系碩士班,台北 (2007)。
[35]張凱欣,「指叉型質子交換膜燃料電池性能之參數研究」,碩士論文,南榮技術學院工程科技研究所,台南 (2011)。
[36]取自:http://www.tfci.org.tw/Fc/class.asp
[37]宋宜家,「Brinkman方程式與Darcy定律應用於指叉型質子交換膜燃料電池數值模擬研究之比較」,碩士論文,南榮技術學院工程科技研究所,台南 (2012)。
[38]沈東和,「平板式固態氧化物燃料電池性能之數值模擬」,碩士論文,南榮技術學院工程科技研究所,台南 (2013)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top