(3.237.20.246) 您好!臺灣時間:2021/04/15 18:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王芝穎
研究生(外文):Jihi-Ying Wang
論文名稱:台灣鯛魚鱗以擠壓與酵素水解製備膠原蛋白胜肽之機能性探討
論文名稱(外文):Functional activities of collagen peptide prepared by extrusion and enzymatic hydrolysis on tilapia scale
指導教授:黃俊勇博士
指導教授(外文):Chun-Yung Huang, Ph.D.
口試委員:黃俊勇蔡永祥趙憶蒙
口試日期:2014-07-28
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:123
中文關鍵詞:膠原蛋白水解物擠壓消化酵素抗氧化台灣鯛魚鱗
外文關鍵詞:collagen hydrolysateextrusiondigestive enzymesantioxidantTaiwan tilapia fish scale
相關次數:
  • 被引用被引用:1
  • 點閱點閱:793
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:120
  • 收藏至我的研究室書目清單書目收藏:1
本研究以台灣鯛魚鱗為原料,以擠壓前處理製備台灣鯛魚鱗膠原蛋白並探討人工消化酵素(Pepsin及Pancreatin)水解所得之膠原蛋白水解物對於作為機能性食品素材及生物科技材料之應用性。利用擠壓機製備經不同酸鹼前處理之台灣鯛魚鱗,將擠壓後之台灣鯛魚鱗擠出物以50oC水萃取1小時可得到台灣鯛魚鱗膠原蛋白,擠壓後魚鱗膠原蛋白總蛋白萃取率可由2.1±0.03%提高至22.19±1.02%、分子量分佈以75-245 kDa為主,小分子片段隨條件不同而有所不同,以檸檬酸前處理之小分子片段最多。台灣鯛膠原蛋白物理性質測定最高黏度為9.8±0.15 cps、最高膠強度為202.3±0.5 g、熔解溫度為62.6-79.0℃、裂解溫度為162.0-179.1℃、色差值其亮度(L值)最高為93.2±0.06,可達商業化規格之膠原蛋白。冷凍乾燥後的膠原蛋白以人工消化酵素(Pepsin及Pancreatin)進行水解,以BPPL所得之分子量最低範圍為100-13740 Da、抗氧化能力最佳為0.97±0.33 Vit C ppm /μg peptide,再以HPLC Superdex peptide column、Desalting column、C18 column進行分離純化,DPPH之抗氧化活性可達1.6±0.22 VitC ppm /ug peptide,所得分子量為977-2932 Da,ACE抑制活性可達14.48%,以C18管柱確認純度後再進行蛋白質之鑑定。本研究證明擠壓操作有助於提高台灣鯛魚鱗膠原蛋白的萃取率且其胜肽水解物具有良好的抗氧化及抑制ACE能力,可作為天然來源保健食品及美妝保養品之素材。
In this study, Taiwan tilapia fish scale collagen extracted from Taiwan tilapia fish scale extrudates and collagen hydrolyzates hydrolyzed by artificial digestive enzymes (pepsin and pancreatin) were investigated. Taiwan tilapia fish scales with different pretreatments were prepared by extrusion and to investigate their functional food and biotechnology material applications. Collagen was obtained by water extraction from Taiwan tilapia fish scale extrudates at 50oC for 1 hour. Results suggested that extraction rate of total protein of collagen was significant increased from 2.1% to 22.2% after extrusion. Molecular weight distribution is 75-245 kDa mainly, and low molecular protein fragments were present by citric acid pretreatment. The physical properties of Taiwan tilapia collagen revealed that the highest viscosity is 9.8 cps, the gel strength was 202.3, the melting point was 62.6-79.0 oC, the temperature of pyrolysis was 162.0-179.1 oC, and the highest L value was 93.2. Therefore, the collagen which we extracted reached commercial standard. Collagen hydrolyzed by artificial digestive enzymes (pepsin and pancreatin) was then freeze dried. The lowest molecular weight range of sample BPPL was 100-13740 Da, and the best antioxidant activity was 0.97 VitC ppm / μg peptide. Sample BPPL was isolated and purified by Superdex peptide column, Desalting column and C18 column. The antioxidant activity measured by DPPH radicals was 1.6 VitC ppm / μg peptide and the molecular weight was 977-2932 Da. The purity of this peptide was confirmed by C18 column, and the identification of protein was also performed. The ACE-inhibitory activity of the purified peptide was also measured. Our results proved that the extraction rate of collagen increased after extrusion process and collagen hydrolyzates had excellent antioxidant and ACE-inhibitory activities. Collagen hydrolysates can be uses as sources of health food and cosmetics from nature.
目錄
中文摘要 I
Abstract II
誌謝 IV
目錄 VI
圖目錄 IX
壹、前言 1
貳、文獻回顧 3
一、台灣鯛概述 3
(一) 台灣鯛型態 3
(二)台灣鯛養殖現況 4
(三)台灣鯛及其副產物之加工利用 5
二、膠原蛋白及其水解物之概述 6
(一)膠原蛋白 6
(二)明膠 8
(三)胜肽 9
(四)膠原蛋白明膠來源 10
(五)膠原蛋白胜肽生產方式 15
(六) 膠原蛋白、明膠及膠原蛋白胜肽之應用性 17
三、擠壓技術及擠壓機概述 29
(一) 擠壓技術 29
(二) 擠壓機 30
參、材料與方法 31
一、實驗材料 31
二、實驗架構與流程 36
三、實驗方法與步驟 37
(一) 實驗設計 37
(二) 台灣鯛魚鱗擠出物製備 37
(三) 萃取及萃取率計算 40
(四) 成分分析 43
(五) 物理性質測定 44
(六) SDS-PAGE蛋白質電泳分析 46
(七) 傅立葉轉換紅外光譜測定 48
(八) 吸濕保濕性試驗 48
(九) 感官品評 49
(十)抗氧化能力活性分析 50
(十一) 酵素水解 56
(十二) 高效液相色譜法(high performance liquid chromatography) 61
(十三) 血管收縮素轉化酶抑制物(ACEI)之抑制活性測定 65
(十四) QTOF-MS/MS 66
(十五)統計分析 66
肆、結果與討論 67
一、台灣鯛魚鱗擠出物膠原蛋白萃取率及特性研究 67
(一)、台灣鯛魚鱗擠出物膠原蛋白之萃取率 67
(二)、台灣鯛魚鱗擠出物膠原蛋白明膠之品質測定 70
(三)、台灣鯛魚鱗擠出物膠原蛋白之感官品評分析 76
二、台灣鯛魚鱗擠出物膠原蛋白之分子量與功能性評估 78
(一)、台灣鯛魚鱗擠出物膠原蛋白之FTIR圖譜鑑定 78
(二)、台灣鯛魚鱗擠出物膠原蛋白之分子量測定 81
(三)、台灣鯛魚鱗擠出物膠原蛋白之功能性分析 85
三、台灣鯛魚鱗膠原蛋白之酵素水解物探討 92
(一)、台灣鯛魚鱗膠原蛋白之酵素水解條件及水解度分析 92
(二)、台灣鯛魚鱗膠原蛋白之酵素水解物分子量評估 94
(三)、台灣鯛魚鱗膠原蛋白之酵素水解物抗氧化及穩定度分析 96
四、台灣鯛魚鱗膠原蛋白酵素水解物之純化及抗氧化能力分析 102
(一)、Superdex peptide 膠過濾層析 102
(二)、台灣鯛魚鱗膠原蛋白酵素水解物之分子量分化功能性評估 104
(三)、C18胜肽純度分析 106
(四)、台灣鯛魚鱗膠原蛋白酵素水解物之C18管柱層析分化功能性評估 108
五、台灣鯛魚鱗膠原蛋白之功能性胜肽胺基酸蛋白質鑑定 110
伍、結論 111
陸、參考文獻 113
柒、附錄 122

陸、參考文獻
網際網路

台灣區遠洋魷漁船魚類輸出業同業公會http://www.squid.org.tw
台灣魚類資料庫http://fishdb.sinica.edu.tw/chi/home.php
台灣鯛魚協會http://1207834107708.tw66.com.tw/
行政院農業委員會漁業署http://www.fa.gov.tw
食品資訊網http://210.69.111.56/FoodNew/

中文文獻

田雲生,台中區農業改良場八十九年度試驗研究暨推廣學術研討會報告摘要-特刊第49號
朱玉灼、周照仁(2002)。吳郭魚皮副產品的開發利用,行政院農業委員會研究報告。
行政院農業委員會漁業署,中華民國台閩地區漁業統計年報,民國102年8月刊行
李鴻昌,2013,虱目魚魚鱗功能性胜肽之製備與純化及礦物質螯合能力探討,國立高雄海洋科技大學水產食品科學系碩士論文。
李玉蓮,2011,膠原蛋白的發展與展望,國立虎尾科技大學生物科技系碩士論文。
李英漢,2012,魚鱗膠原蛋白胜肽之礦物質結合功能性探討,國立高雄海洋科技大學水產食品科學系碩士論文。
吳双智,2008。利用酵素法由魚鱗中製備膠原蛋白胜肽,國立高雄海洋科技大學水產食品科學研究所碩士學位論文。
洪雅萍,2004。膠原蛋白產品的功效,科學發展,380:30-35。
莫小曼,2000,高濕擠壓技術生產纖維性仿肉製品,中國食品。
張裕中等,食品擠壓加工技術與應用,中國輕工業出版社,2000
陳俊成,2002,動物膠在食品中之功能性與應用,食品資訊,188:52-58。
陳榮輝,2006,台灣鯛魚皮膠原蛋白之萃取及其特性鑑定,臺灣海洋大學食品科學系,碩士論文。
陳鋒亮,2009,食品擠壓過程中水分的作用及變化研究進展,中國農業科學院農產品加工研究所。
黃雅玲,2001,吳郭魚皮明膠之萃取及其物理化學特性之探討,學生專題研究報告,國立高雄海洋科技大學水產食品科學系。
黃偉仁,2007,台灣鯛養殖場養殖型態之比較-隨機性邊界生產函數之應用,國立臺灣海洋大學應用經濟研究所碩士論文。
黃鈺茹,2011,不同水生生物來源所得之膠原蛋白物理與生物化學相關特性,國立澎湖科技大學食品科學系
黃婉君,2005,鹼劑前處理對吳郭魚皮製備明膠之品質提升的影響,國立高雄海洋科技大學水產食品科學研究所碩士學位論文。
楊人龍,2008,台灣鯛魚皮膠原蛋白、明膠和膠原蛋白水解液之特與比較,國立成功大學化學研究所碩士論文。
傅之烜,2007,吃的膠原蛋白,元氣齋出版社。
趙怡然,2006,魚產廢棄物中明膠之提取及其應用,國立屏東科技大學食品科學系,碩士論文,屏東。
劉富光,1995,台灣農家要覽漁業篇,p.129-138,豐年社,臺北。
蔡幸璁,2013。擠壓處理對提高魚鱗膠原蛋白萃取率之影響及應用,國立高雄海洋科技大學水產食品科學所,碩士論文。
蔡慧君、胡燕君 (2005) 魚鱗的完全利用,水試專訊,12: 12-15。
賴志行,2006,魚鱗膠原蛋白之萃取及其酵素水解物抗氧化與角質細胞增生效果之探討,台灣海洋科技大學食品科學系碩士論文。
簡吟真,2000,吳郭魚皮膠原蛋白的抽出與明膠之特性,大專學生參與專題討論研究計畫研究成果報告,NSC 89-2815-C022-033-B,國立高雄海洋科技大學。



英文文獻

AOAC(1984). Official methods of analysis of the Association of Official Analytical Chemists (No. Ed. 14).
AOAC(1997). Kjeldahl method, Moisture, Gelatin, Dessert Preparations and Mixes. Official Method of Analysis (13th ed.). Association of Offical Analyical Chemists. Washington, D. C.
Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry,27(6), 1256-1262.
Ahmad, M., & Benjakul, S. (2010). Extraction and characterisation of pepsin-solubilised collagen from the skin of unicorn leatherjacket ( Aluterus monocerous). Food Chemistry,120(3), 817-824..
Akdogan, H. (1999). High moisture food extrusion. International journal of food science & technology,34(3), 195-207..
Alemán, A., & Martínez-Alvarez, O. (2013). Marine Collagen as a Source of Bioactive Molecules: A Review. The Natural Products Journal,3(2), 105-114.
Alemán, A., Giménez, B., Pérez-Santin, E., Gómez-Guillén, M. C., & Montero, P. (2011). Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chemistry,125(2), 334-341.
Altan, A., McCarthy, K. L., & Maskan, M. (2008). Twin-screw extrusion of barley–grape pomace blends: Extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering,89(1), 24-32.
Bailey, A. J., & Light, N. D. (1989). Connective tissue in meat and meat products.(期刊?頁數?)
Butterfield, D. A., Castegna, A., Pocernich, C. B., Drake, J., Scapagnini, G., & Calabrese, V. (2002). Nutritional approaches to combat oxidative stress in Alzheimer’s disease. The Journal of nutritional biochemistry,13(8), 444-461.
Choi, S. S., & Regenstein, J. M. (2000). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science,65(2), 194-199.
Di Bernardini, R., Harnedy, P., Bolton, D., Kerry, J., O’Neill, E., Mullen, A. M., & Hayes, M. (2011). Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chemistry,124(4), 1296-1307.
Fahmi, A., Morimura, S., Guo, H. C., Shigematsu, T., Kida, K., & Uemura, Y. (2004). Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochemistry,39(10), 1195-1200.
Fan, J., He, J., Zhuang, Y., & Sun, L. (2012). Purification and identification of antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) frame protein. Molecules,17(11), 12836-12850.
Foster, J. A., Bruenger, E., Gray, W. R., & Sandberg, L. B. (1973). Isolation and amino acid sequences of tropoelastin peptides. Journal of Biological Chemistry,248(8), 2876-2879.
Fu, Y., & Zhao, X. H. (2013). In vitro responses of hFOB1. 19 cells towards chum salmon (Oncorhynchus keta) skin gelatin hydrolysates in cell proliferation, cycle progression and apoptosis. Journal of Functional Foods,5(1), 279-288.
Giménez, B., Turnay, J., Lizarbe, M. A., Montero, P., & Gómez-Guillén, M. C. (2005). Use of lactic acid for extraction of fish skin gelatin. Food hydrocolloids,19(6), 941-950.
Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Current opinion in biotechnology,18(2), 163-169.
Hickman, D., Sims, T. J., Miles, C. A., Bailey, A. J., De Mari, M., & Koopmans, M. (2000). Isinglass/collagen: denaturation and functionality. Journal of biotechnology,79(3), 245-257.
Himaya, S.W.A.; Ngo, D.H.; Ryu, B.; Kim, S.K. (2012). An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatine attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chemistry, 132(4), 1872-1882.
Holzer, D. (1996). Gelatin production. U.S. Patent 5,484, 888.
Je, J. Y., Qian, Z. J., Byun, H. G., & Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry,42(5), 840-846.
Johnston-Banks, F. A. (1990). Gelatin. Food gel, p. 233-289, New York: Elservier applied food science series.
John. (1980). Collagen, the anatomy of a protein. The Institute of Biology's Studies in Biology 117, 1-59.
Jones, B. N., & Gilligan, J. P. (1983). O-phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. Journal of Chromatography A, 266, 471-482.
Kuda, T., Tsunekawa, M., Hishi, T., & Araki, Y. (2005). Antioxidant properties of driedkayamo-nori', a brown alga Scytosiphon lomentaria ( Scytosiphonales, Phaeophyceae). Food Chemistry,89(4), 617-622.
Kurane, R., & Nohata, Y. (1994). A new water-absorbing polysaccharide from Alcaligenes latus. Bioscience, biotechnology, and biochemistry,58(2), 235-238.
Liu, D., Liang, L., Regenstein, J. M., & Zhou, P. (2012). Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp ( Hypophthalmichthys nobilis). Food chemistry,133(4),1441-1448.
Martin, G. (1969). Gum technology in the food industry, p. 359., New York.
Mendis, E., Rajapakse, N., & Kim, S. K. (2005). Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. Journal of agricultural and food chemistry,53(3), 581-587.
Mendis, E., Rajapakse, N., Byun, H. G., & Kim, S. K. (2005). Investigation of jumbo squid ( Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences,77(17), 2166-2178.
Moskowitz, R. W. (2000). Role of collagen hydrolysate in bone and joint disease. In Seminars in arthritis and rheumatism(Vol. 30, No. 2, pp. 87-99). WB Saunders..
Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Characterisation of acid soluble collagen from skins of young and adult Nile perch ( Lates niloticus). Food Chemistry,85(1), 81-89.
Nagai, T., & Suzuki, N. (2000). Isolation of collagen from fish waste material—skin, bone and fins. Food Chemistry,68(3), 277-281.
Nakajima, K., Yoshie-Stark, Y., & Ogushi, M. (2009). Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates. Food Chemistry, 114, 844–851.
Ngo, D. H., Qian, Z. J., Ryu, B., Park, J. W., & Kim, S. K. (2010). In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of Functional Foods,2(2), 107-117.
Ngo, D. H., Ryu, B., & Kim, S. K. (2014). Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food chemistry,143, 246-255.
Nishimoto, M., Sakamoto, R., Mizuta, S., and Yoshinaka, R. (2005). Identification and characterization of molecular species of collagen in ordinary muscle and skin of the Japanese flounder Paralichthys olivaceus. Food chemistry,90(1), 151-156.
Olsen, D., Yang, C., Bodo, M., Chang, R., Leigh, S., Baez, J., and Polarek, J. (2003). Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery Reviews,55(12), 1547-1567.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine,26(9), 1231-1237.
Ryuichiro, K.; Yasuhiro, N.A New Water-Absorbing polysaccharide from
Alcaligenes Iatus. biosci. biotechem. Biochem. 994,58:235-238.
Sugiyama, K., Egawa, M., Onzuka, H., & Oba, K. (1991). Characteristics of sardine muscle hydrolysates prepared by various enzymic treatments. Bulletin of the Japanese Society of Scientific Fisheries (Japan).
Sun, L., Zhang, Y., & Zhuang, Y. (2013). Antiphotoaging effect and purification of an antioxidant peptide from tilapia (Oreochromis niloticus) gelatin peptides. Journal of Functional Foods,5(1), 154-162.
Vo, T. S., Ngo, D. H., Kim, J. A., Ryu, B., and Kim, S. K. (2011). An antihypertensive peptide from tilapia gelatin diminishes free radical formation in murine microglial cells. Journal of agricultural and food chemistry,59(22), 12193-12197.
Wang, L., An, X., Yang, F., Xin, Z., Zhao, L., & Hu, Q. (2008). Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella). Food Chemistry,108(2), 616-623.
Ward, A. F., and Courts, A. (1977) The science and technology of gelatin. Academic Press Inc., New York.
Williams, S. (1984).Official methods of analysis of the Association of Official Analytical Chemists(No. Ed. 14).
Woodhead-Galloway, J. (1980). Collagen, the anatomy of a protein. Institute of Biology's Studies in Biology# 117, 1-59.
Wu, J., & Ding, X. (2002). Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International,35(4), 367-375.
Yu, L., Haley, S., Perret, J., & Harris, M. (2002). Antioxidant properties of hard winter wheat extracts. Food Chemistry,78(4), 457-461..
Zhang, N., Liu, X., Yu, L., Shanks, R., Petinaks, E., and Liu, H. (2013). Phase composition and interface of starch–gelatin blends studied by synchrotron FTIR micro-spectroscopy. Carbohydrate polymers,95(2), 649-653.
Zhang, Y., Zhang, L., and Geng, Y. (2014). Hawthorn fruit
attenuatesatherosclerosis by improving the hypolipidemic and
antioxidant 121 activities in apolipoprotein e-deficient mice.
Journal of Atherosclerosis and Thrombosis,21(2), 119-128.
Zhu, L., Chen, J., Tang, X., & Xiong, Y. L. (2008). Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. Journal of Agricultural and Food Chemistry,56(8), 2714-2721.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔