(34.239.150.57) 您好!臺灣時間:2021/04/14 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陸冠華
研究生(外文):Guan-Hua LU
論文名稱:鋁摻雜氧化鋅濕度感測元件之研究
論文名稱(外文):Study of Relative Humidity Sensing Device Using Zinc Oxide Compound with Aluminum Doping
指導教授:楊誌欽楊誌欽引用關係
指導教授(外文):Chih-Chin YANG
口試委員:卜一宇高宗達
口試委員(外文):Yi-Yu BUKao-Tsung TA
口試日期:2014-05-16
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:氧化鋅、直流濺鍍法、曝光顯影、鋁摻雜
外文關鍵詞:Zinc oxide, DC sputtering method, photo lithography, Aluminum doping.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用直流濺鍍成長法及曝光顯影製程法,製造氧化鋅鋁薄膜兩端與三端電子元件並測量其感測特性,元件的感測特性是在不同的相對濕度環境中測量元件的電阻值、電容值、電感值和I-V曲線。藉由薄膜電阻值的測量發現,當環境相對濕度從30%RH升高至90%RH時,電阻值從18 KΩ降低至4 KΩ,電阻值變化達14 KΩ,吸附時間與去吸附時間分別為40秒與60秒。藉由薄膜電容值量測發現,當相對濕度從30%RH至90%RH時,電容值的變化從5.2 nF增加至5.7 nF,變化值達0.5 nF,電容特性的吸附時間與去吸附時間分別為35秒與35秒。藉由測量薄膜電感值發現,當相對濕度從30%RH至90%RH時,電感值的變化從2.8 H降低至0.1 H,變化值達2.7 H,電感特性的吸附時間與去吸附時間分別為40秒與20秒。
In this thesis, the two terminal sensing devices and three terminal sensing devices were successfully fabricated by using the DC sputtering method and photo lithography method. The sensing devices are to detect the relative humidity value in the moisture environment using the zinc oxide sensing film with suitable aluminum doping. The measurements of resistance value, capacitance value, inductance value and current to voltage characteristic at different relative humidity environment were also completed for the sensing property of zinc oxide sensing device. The resistance value of zinc oxide sensing device are respectively 18 KΩ at 30% RH and 4 KΩ at 90% RH. The variation of resistance value reaches as up to the 14 KΩ from 30% RH to 90% RH. The adsorption time and desorption time of resistance measurement are 40 seconds and 60 seconds respectively. The capacitance value of zinc oxide sensing device are respectively 5.2 nF at 30% RH and 5.7 nF at 90% RH. The variation of capacitance value reaches as up to the 0.5 nF from 30% RH to 90% RH. The adsorption time and desorption time of capacitance measurement are 35 seconds and 35 seconds respectively. The inductance value of zinc oxide sensing device are respectively 2.8 H at 30% RH and 0.1 H at 90% RH. The variation of inductance value reaches as up to the 2.7 H from 30% RH to 90% RH. The adsorption time and desorption time of inductance measurement are 40 seconds and 20 seconds respectively.
摘要 I
Abstract II
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
第一節 前言 1
第二節 研究動機 3
第三節 研究目的 6
第二章 文獻探討 7
第一節 氧化鋅(ZnO)材料特性 7
第二節 氧化鋅鋁(AZO)材料特性 12
2-2.1氧化鋅鋁(AZO)晶體結構 13
2-2.2氧化鋅鋁(AZO)材料能帶 14
2-2.3 氧化鋅鋁(AZO)光特性及應用探討 14
2-2.4 氧化鋅鋁(AZO)透明導電薄膜應用 15
第三章 實驗及研究方法 16
第一節 研究架構 16
3-1.1 元件架構圖 16
3-1.2 阻抗式鋁摻雜氧化鋅感測元件 17
3-1.3 DG1背電極金氧半感測元件 17
3-1.4 DG2正電極金氧半感測元件 18
3-1.5 DG1S背閘級金氧半電晶體感測元件 19
3-1.6 DG2S正閘級金氧半電晶體感測元件 20
第二節 研究設備 22
3-2.1 直流射頻濺鍍機原理 22
3-2.2 原子力顯微鏡原理(Atomic Force Microscopic) 23
3-2.3 X-ray繞射原理(X-ray Diffraction) 24
第三節 元件製作流程 25
第四節 光罩圖 32
第五節 晶片清洗流程 33
第四章 結果與討論 34
第一節 鋁摻雜氧化鋅材料之分析 34
第二節 鋁摻雜氧化鋅感測薄膜奈米型態分析 35
4-2.1 薄膜表面分析(SEM) 35
4-2.2 薄膜表面分析(EDX) 40
第三節 原子力顯微鏡分析(AFM) 41
第四節 X-ray 光譜繞射分析 44
第五節 相對濕度感測元件之分析(LCR) 46
4-5.1 氧化鋅鋁感測元件電容時飄特性(C) 46
4-5.2 氧化鋅鋁感測元件電阻時飄特性(R) 51
4-5.3 氧化鋅鋁感測元件電感時飄特性(L) 55
4-5.4 氧化鋅鋁感測元件電感迴滯特性(L) 60
4-5.5 氧化鋅鋁感測元件電容迴滯特性(C) 62
4-5.6 氧化鋅鋁感測元件電阻迴滯特性(R) 64
4-5.7 相對濕度I-V感測分析 66
二端結構 66
三端結構 71
第五章 結論與未來展望 76
5-1 結論 76
參考文獻 78

[1].Y. Zhang, K. Yu, S. Ouyang, L. Luo, H. Hu, Q. Zhang, Z. Zhu, “Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films”, Physica B, pp.94-99, 2005
[2].楊誌欽 陳楷錫 林宗義 吳秉宸 國立高雄海洋科技大學學報 第二十四期
[3].G. Du, Y. Zhang, Y. Ma, X. Yang, B. Zhao, B. Liu, T. Yang, H. Yang D. Liu, “ZnO thin films growth by plasma assisted metal organic vapor phase epitaxy”, IEEE Conference of Sensor and Acoustic, pp.292-296, 2003
[4].H. G. Hong, T. Y. Seong, and S. Lee,”Growth characteristics of ZnO nanowires on silicon, sapphire and GaN substrates”, IEEE Conference of Sensor and Acoustic, pp.121-122, 2003
[5].C. Jin, R. Narayan, A. Tiwari, H. Zhou, A. Kvit, J. Narayan,”Epitaxial growth of zinc oxide thin films on silicon”, Materials Science and Engineering B, 117, pp. 348-354, 2005 2006.
[6].T.Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, and Y. Horikoshi,”Instrinsic defects in ZnO films grown by molecular beam epitaxy”, Japanese Journal of Applied Physics, 43(5A), pp.2602-2606, 2004 (2007).
[7].Qi Qi, Tong Zhang, Qingjiang Yu, Rui Wang,Yi Zeng, Li Liu, Haibin Yang, “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screenprinting”, Sensors & Actuators:B.,vol:133,pp.638- 643,2008
[8].Mei-Wen Lin,“Investigation on the Performance of PLED with ZnO: Al Anode Deposited on Soft Polymer Substrate”,Institute of National Chen Kung University Tainan,Taiwan.,2008.
[9].S.A.Krutovertsev, A. E. Tarasova, L. S. Krutovertseva, A. V. Zorin, ”Integrated multifunctional humidity sensor”, Sensors and Actuators, A62, pp.582-585, 1997
[10].G. M. O’Halloran, P. M. Sarro, J. Groeneweg, P. J. Trimp, and P. J. French,”A bulk micromachined humidity sensor based on porous silicon”,International conference on Solid-State Sensors and Actuators, pp.563-566,1997
[11].S. N. Chen, E. S. Ramakrishnan, R. S. Huang, and W. W. Grannemann,”A new thin film humidity microsensor”, IEEE Electron Device Letters, 5(11), pp.452-453, 1984
[12].A. Tetelin and C. Pellet, “Modeling and optimization of a fast response capacitive humidity sensor”, IEEE Sensors Journal, 6(3), 2006
[13].W.Y.Chang, W.W.Ke,Y.S. Hsieh,N.H.Kuo and Y.C.Lin, “Using Pt dopant and sol gel technology for sensitivity enhancement of TiO2/SnO2 humidity sensors”, Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference, 2005
[14].N.L.Sbar and R. P. Kozakiewicz, “New acceleration factors for temperature, humidity, bias testing”, IEEE Transaction on Electronic Devices, 26(1), pp.56-71,1979
[15].M. J. Yang, Y. Li, M. F. Ling, H. P.Wang,”Humidity sensors using In-situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites”, Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 24th Annual Conference, 2002”
[16].J. Wang, “Composites of nanocrystal BaTiO3 and polymer gave better sensing properties than that of BaTiO3”,Materials Chemistry and Physics, 69, pp.288-291, 2001
[17].K. Suri, “ Gas and humidity sensors based on pellets of FeCl3 polypryrrole nanocomposite”, Sensors and Actuators, B81, pp.277-281, 2002
[18].Y. Li,”Nanocomposite of sodium polystyrenesulfonate with TiO2”,Chinese Journal of Polymer Science, in press,2006
[19].J. G. Li and S. P. Lee,”Impedence characteristics of carbon nitride films for humidity sensors”, The 13th International Conference on Solid State Sensors, Actuators and Microsystems,pp.1844-1847, 2005
[20].K. Ellmer, A. Klein, B. Rech, 『Transparent conductive Zinc Oxide』Springer(2007)
[21].陳哲雄,林俊勳,林紋瑞,吳靖宙 ,原子力顯微鏡成像原理與中文簡易操作手冊, 成功大學醫學工程所生醫感測實驗室
[22].Guan Hua Lu, Chih Chin Yang, Wei Jun Jiang, Shun Hsyung Chang, and Chih Cheng Wu, “Application of Titanium Dioxide Doped Nitrogen in Moisture Sensing Device with High Sensitivity”, Proceedings of the Second International Conference on Materials, Energy, and Environments (ICMEE)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔