跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳騰雄
研究生(外文):WU TENG-HSIUNG
論文名稱:半導體封裝製程覆晶封膠技術研究
論文名稱(外文):The Research of Semiconductor Flip Chip Packaging Process and Sealant Technology
指導教授:張順雄張順雄引用關係
口試委員:張順雄卜一宇高宗達
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:79
中文關鍵詞:覆晶封膠底膠充填毛細現象爬膠孔洞
外文關鍵詞:flip- sealed plasticUnderfillcapillarityplastic climbingvoid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:668
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
在日新月異的半導體科技時代,智慧型手機已經非常普遍,而使用者常因為不小心或使用狀況特殊,造成手機摔傷,此時關係到手機製造過程中的關鍵技術,即是晶片保護製程覆晶封膠技術,覆晶封裝製程技術起源於1960年,是由IBM首先提出,開發出所謂C4倒裝晶片連接(Controlled Collapse Chip Connection)技術,由於覆晶封膠包含晶片、基板及凸塊三種不同材料所受的熱膨脹係數影響,相差係數大,容易使相關電子元件損壞,因此在三者之間填入環氧樹酯,減緩熱應力集中所造成晶片損壞,達到保護作用。覆晶封膠技術是應用毛細力進行晶片封膠的製程,可使晶片堅固強化,但封膠製程中容易因膠材多寡及多項製程參數問題,形成晶片爬膠或孔洞等問題;為了提高製程的穩定性與良率,本文將探討封膠製程中造成爬膠、孔洞的影響因素,包括:表面張力、接觸角、黏度、畫膠筆數,間隙作一完整研究與探討;另外將以底膠充填方程式做為基本運用,將實際封膠所產生之缺點,作不同實驗計畫;找出最佳製程參數,以提高產品可靠度及良率。
從實驗研究中,成功找出268L晶片的最佳製程參數及383L晶片產生孔洞原因。在268L晶片的製程中畫膠筆數由2筆改成單筆,針頭離晶片邊緣距離須在0.3毫米~0.4毫米可避免產生爬膠情形,製程改善後機台每單位生產量提升5%產量;383L晶片產生孔洞原因是:畫膠筆數間隔中間有等待時間,等待時間在30秒、60秒都會造成孔洞,在實驗中得到以上結果。
關鍵詞: 覆晶封膠、底膠充填、毛細現象、畫膠筆數、爬膠、孔洞。

In the era of everchanging semiconductor techonology,smart phones have already been very popular in people’s lives.The users of the product often accidentally break their phones by falling due to carelessness or some other unexpected conditions.This kind of breakdown involves with the key technologies of the manufacturing process,which is called the flip-chip protecting sealant process technology.Flip-chip packaging process technology was originated in 1960,which was first proposed by IBM.The company developed the so-called C4 flip-chip connection (Controlled Collapse Chip Connection) technology.The technology was developed because the flip-sealed plastic between the three components,which are the flip-chip,the base board and the bump-plate,is easily affected by the huge coefficient from the thermal expansion.The affection would cause the damage within the electronic components of the smart phones.Filling the gaps between the three components with exposy resin would slow down the thermal stress concentration and prevent the damage to the chip.The process could also strengthen the chip and dispose all of the necessary protection to the components.Flip-chip protecting sealant technology is the application of capillary force,which has been used onto the plastic-sealed manufacturing process in flip-chip making for the recent decades long.However,there are still some problems may occur because of the amount of plastic material and the parameter from the manufacturing process.These problems are known as plastic-climbing and the holes on the wafers.In order to improve the stability and yield from the manufacturing process,This essay will explore the factors which result in the two kinds of damage mentioned above.The factors including:surface tension,contact angle,viscosity,painted plastic items,etc.All of these factors will be completely researched and discussed in the paper;On the other hand,we would also use the bottom-filling formula as the basic application.Making different experiment schemes for any kinds of shortcomings from the practical sealant procedures.
Attempting to find out the best parameter while producting ,In oder to promote the reliability and yield onto the product.
According to the research from the experiments,we successfully found out the best producing parameter of the 268L chip and the reasons why caused the holing phenomenon on 383L chip.Changing the strokes in the manufactaing progress from two to one,the needle is supposed to keep the distance from the edge of the chip by 0.3mm~0.4mm is possible to avoid the glue-climbing problem.After the improvement every machine is able to raise about 5% productivity from each unit.From our reseach,we´ve found out the reason why caused the holing problem on 383L chip ,that is,there is always waiting time between the gluing strokes.It would cause the holing phenomenom among thirty secods,sixty seconds in the process.All of the results that we mentioned above all were found from the experiments.
Keywords : flip- sealed plastic,Underfill,capillarity,painted plastic items,plastic climbing,void .
目錄
誌謝 i
摘要 ii
Abstract iii
第一章緒論 1
1-1簡介 1
1-2研究動機與目的 5
1-3論文架構 6
第二章文獻研究與回顧 7
2-1何謂封裝 7
2-2覆晶構裝製程 9
2-3文獻回顧 13
第三章 理論與分析 18
3-1 覆晶封膠製程介紹19
3-2 膠材組成元素 25
3-3覆晶封膠製程特性介紹29
3-4熱分析儀(Thermomechanical Analyzer)31
3-5動態力學分析儀 (Dynamic Mechanical Analyzer)33
3-6填充粒含量之影響 37
3-7接觸角基本原理 42
3-8 如何調整材料性質 43
3-9 底部封膠製程之分析探討 46
第四章研究方法與步驟 47
4-1覆晶封膠製程異常問題 47
4-2實驗設備 48
4-3實驗規劃與設計 53
4-4 268L 實驗程序 54
4-5 268L 爬膠實驗 55
4-6 383L 實驗程序 65
4-7 383L 孔洞實驗 66
第五章 結論與未來研究方向 73
參考文獻 77


[1] J. Lau, C. Wong, J. Prince and W. Nakayama, “Electronic Packaging, Design, Materials, Process, and Reliability, ” 1998.
[2] 謝宗雍 and 陳力俊, “微電子材料與製程, ” 中國材料科學學會2000.
[3] S. Han and K. Wang, “Study on the pressurized underfill encapsulation of flip chips, ” Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on, vol. 20, pp. 434-442, 1997.
[4] L. Nguyen, C. Quentin, P. Fine, B. Cobb, S. Bayyuk, H. Yang and S. Bidstrup-Allen, “Underfill of flip chip on laminates: simulation and validation, ” Components and Packaging Technologies, IEEE Transactions on, vol. 22, pp. 168-176, 1999.
[5] P. Fine, B. Cobb and L. Nguyen, “Flip chip underfill flow characteristics and prediction, ” Components and Packaging Technologies, IEEE Transactions on, vol. 23, pp. 420-427, 2000.
[6] W. Young and W. Yang, “Underfill viscous flow between parallel plates and solder bumps, ” Components and Packaging Technologies, IEEE Transactions on, vol. 25, pp. 695-700, 2002.
[7] 林文山, “覆晶封裝底部封膠技術之研究, ” 成功大學航空太空工程學系學位論文, pp. 1-70, 2003.
[8] 賴成展, “覆晶封裝底部填膠之流動分析, ” 私立中原大學機械工程學系學位論文, 2004.
[9] J. Wang, “Flow time measurements for underfills in flip-chip packaging, ” Components and Packaging Technologies, IEEE Transactions on, vol. 28, pp. 366-370, 2005.
[10] M. K. Schwiebert and W. H. Leong, “Underfill flow as viscous flow between parallel plates driven by capillary action, ” Components, Packaging, and Manufacturing Technology, Part C, IEEE Transactions on, vol. 19, pp. 133-137, 1996.
[11] Y. Chia, S. Lim, K. Chian, S. Yi and W. Chen, “A study of underfill dispensing process, ” International Journal of Microcircuits and Electronic Packaging, vol. 22, pp. 345-352, 1999.
[12] G. Lehmann, T. Driscoll, N. Guydosh, P. Li and E. Cotts, “Underflow process for direct-chip-attachment packaging, ” Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, vol. 21, pp. 266-274, 1998.
[13] S. Han and K. Wang, “Analysis of the flow of encapsulant during underfill encapsulation of flip-chips, ” Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on, vol. 20, pp. 424-433, 1997.
[14] J. Qi, R. W. Johnson, E. Yaeger, M. Konarksi, T. Doody, Z. A. Szczepaniak and L. Crane, “Manufacturability Issues of Flip Chip on Laminate Assembly, ” International Journal of Microcircuits and Electronic Packaging, vol. 22, pp. 270-279, 1999.
[15] P. Fine, B. Cobb and L. Nguyen, “Flip chip underfill flow characteristics and prediction, ” Components and Packaging Technologies, IEEE Transactions on, vol. 23, pp. 420-427, 2000.
[16] E. W. Washburn, “The Dynamics of Capillary Flow, ” Physical Review, vol. 17, pp. 273-283, 1921.
[17] S. Newman, “The Kinetics of wetting of surfaces by polymers; capillary flow, ” J. Colloid Interface Sci., vol. 26, pp. 209-213, 1968.
[18] I. H. Shames, Mechanics of Fluids, 2nd ed. New York: The McGraw-Hill , 1982, pp. 341-344.
[19] W. Young and W. Yang, “Underfill of flip-chip: the effect of contact angle and solder bump arrangement, ” Advanced Packaging, IEEE Transactions on, vol. 29, pp. 647-653, 2006.
[20] 彭星維, “覆晶封裝底部封膠流場之模擬分析, ”成功大學航空太空工程學系學位論文, pp. 1-97, 2009.
[21] D. Suryanarayana, T. Y. Wu and J. A. Varcoe, “Encapsulants used in flip-chip packages, ” in Electronic Components and Technology Conference, 1993. Proceedings., 43rd, 1993, pp. 193-198.
[22] J. Bico, U. Thiele and D. Quéré, “Wetting of textured surfaces, ” Colloids Surf. Physicochem. Eng. Aspects, vol. 206, pp. 41-46, 2002.
[23] G. Palasantzas and De Hosson, J Th M, “Wetting on rough surfaces,” Acta Materialia, vol. 49, pp. 3533-3538, 2001.
[24] Alan Lewis,Alec J.Babiarz, “Automatic Dispensing Process for Under Filling Flip Chip on Board, ”Web site http://www.asymtek.com.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top