(3.235.25.169) 您好!臺灣時間:2021/04/17 20:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃柏鈞
研究生(外文):Huang, Bo Jyun
論文名稱:船舶橫搖俯仰波浪通道熱性能實驗研究
論文名稱(外文):An experimental study of thermal performance of wavy channel at simulated ship pitching and rolling conditions
指導教授:張始偉張始偉引用關係
指導教授(外文):Chang, Shyy Woei
口試委員:蘇樂梅江貴鳳
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:輪機工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:45
中文關鍵詞:熱性能俯仰運動橫搖運動波紋管道
外文關鍵詞:Thermal PerformancePitchingRollingWavy Channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究探討於單一橫搖或俯仰條件及複合橫搖與俯仰條件
下,波紋管道之熱性能特性。於靜態與搖擺條件,波紋管道之詳細
Nu 分佈圖,係利用紅外線熱像儀截取之壁溫分佈計算求得。而壓損
係數則於等溫條件下量測,熱性能係數(TPF)係於定泵功率條件下定
義。於本實驗測試之波紋管道,於單獨橫搖或俯仰條件下所得之Nu 值
皆自靜態條件量測之Nu0值提升。而複合橫搖與俯仰之偶合作用,則
抑制單獨橫搖和俯仰運動所產生之強化。於所有之搖擺測試條件,浮
力效應皆提升Nu ,但是其效應則隨搖擺力相對強度之提升而減弱。
壓損係數(f)均隨著搖擺力的提升而增加。於各搖擺條件,熱傳增益與
壓損增益均隨搖擺力之提升而增加。本測試管道之TPF 值,於層流
域隨Re 數增加而增加,但於紊流域則隨Re 數增加而遞減。本研究推
導之熱傳及壓損係數之實驗公式,可以評估單獨橫搖或俯仰及複合橫
搖與俯仰效應,於浮力效應之作用,對本測試管道Nu 及f 之單獨及
交互影響,並應用Nu 與f 之實驗式,評估本測試管道以Pi 及Ro 數
的定義之最佳與最差操作條件。
This experimental study investigates the thermal performances of a
narrow wavy channel which swings about two orthogonal axes under
single and compound rolling and pitching oscillations. Full-field Nusselt
number (Nu) images over the wavy channel wall are detected at static and
swinging conditions by infrared thermography method and examined
comparatively to highlight the influences of rolling and pitching
oscillations on heat transfer performances. A set of selected heat transfer
data illustrates the individual and interdependent influences of rolling and
pitching oscillations on the detailed Nu distributions and the
area-averaged Nusselt numbers ( Nu ). Pressure drop coefficients (f) for
isothermal flows and thermal performance factors (TPF) at static and
swinging conditions are subsequently analyzed. For this particular
channel configuration, the single rolling or pitching oscillation elevates
Nu from the static references; whereas the synergistic effects of
compound rolling and pitching oscillations with either harmonic or
non-harmonic rhythms suppress the beneficial heat transfer impacts by
single rolling or single pitching oscillations. Buoyancy effects in isolation
elevate Nu but are weakened as the relative strength of swinging force
enhances. Pressure drop coefficients (f) consistently increase as the
relative strength of swinging forces increases. At the expense of increased
pressure drop penalties for heat transfer augmentations by swinging
oscillations, the thermal performance factor (TPF) respectively increases
and decreases as Reynolds number (Re) increases with laminar and
turbulent reference conditions. Empirical heat-transfer and pressure-drop
correlations are generated to permit the evaluations of individual and
interactive effects of single and compound swinging force effects with
buoyancy interactions on Nu and f coefficients. By the aid of these Nu
and f correlations, the favorable and worse operating conditions in terms
of the swinging parameters for the TPF properties of this corrugated
wavy channel are identified.
中文摘要 ..........................................................................................................................I
英文摘要 ........................................................................................................................ II
符號對照表 ......................................................................................................... IV
第一章 前言及文獻回顧 ............................................................................................... 1
第二章 實驗方法與設備 ............................................................................................... 8
2-1俯仰橫搖環境管流熱場統御無因次參數分析 .......................................... 8
2-2實驗設備 .................................................................................................... 15
2-3實驗流程 .................................................................................................... 20
第三章 結果與討論 ..................................................................................................... 22
3-1熱傳結果 .................................................................................................... 22
3-2壓損係數與熱性能係數 ............................................................................ 37
第四章 結論 ................................................................................................................. 44
參考文獻 ....................................................................................................................... 46
圖1 斜肋示板式熱交換器與45 度傾斜波紋浪板式熱交換器流向示意圖 ............ 3
圖2 45 度傾斜波狀管道於Re=20000 週期全展紊流域45 度斜面之二次流分佈情
形[2] .................................................................................................................... 5
圖3 傾斜波狀管道與傳統波浪形管道之典型Nu 分佈情形 ................................... 6
圖4 (a) 橫搖俯仰平台(b) 測試模組 ....................................................................... 19
圖5 於Re = (a) 1100 (b) 2200 (c) 3000 (d) 3700 (e) 4400 (f) 5500 之靜態波紋壁
面Nu0 分佈 ......................................................................................................... 23
圖6 Re 數350-5500 沿 (a)流向中心線 (b)S 方向 (c) x 方向之Nu0 變化 .......... 25
圖7 (a) Nu0 (b) Nu0 /Nu∞ 隨 Re數改變而變化之情形 ........................................ 27
圖8 Re=4400, βΔT=0.0023 搖擺波紋管到波紋壁面於 (a)單獨橫搖 (b)單獨俯仰
(c)非簡諧複合橫搖與俯仰 (d)簡諧複合橫搖與俯仰條件之詳細Nu 分佈情
形 ......................................................................................................................... 29
圖9 比較Re=5500,βΔT =0.0026 條件(a)沿y 方向中心線 (b)沿斜波紋方向 (c)
沿x 方向於(Ro=0.13, Pi=0), (Ro=0, Pi=0.13) 以及(Ro=0.13, Pi=0.13)測試條
件之Nu 變化情形.............................................................................................. 30
圖10 搖擺浮力效應於Re=3000 (a) Ro=0.22 (b) Pi=0.22 (c) Ro=0.3, Pi=0.3 測試條
件對波紋壁面詳細Nu 數分佈產生之影響 ..................................................... 31
圖11 於所有測試 Re數,Nu/ Nu0隨(a)BuR 於橫搖固定Ro 數 (b)BuP 於俯仰固定
Pi 數條件之變化情形。 .................................................................................... 33
圖12 (a)(b)零浮力條件Nu/ Nu0隨Ro或Pi增加而改變之情形 (c)(d)φR,P 隨Ro 或
Pi 變化而改變之情形 (e) ζ 隨RoPi 變化而改變之情形 (f) ξ 隨RoPiβΔT
變化而改變之情形 (g)比較實驗量測與回歸公式計算之Nu/ Nu0 .............. 36
圖13 (a)靜態條件f0 及 f0/f∞ 隨Re 變化而改變之情形 (b)(c) f 與f/f0 於單獨搖擺
條件隨Ro 或Pi 變化而改變之情形 (d)Φ 值隨RoPi 變化而改變之情形 (e)
比較實驗量測及公式計算之f/f0 值 .................................................................. 39
圖14 (a)靜態條件TPF 值隨Re 變化而改變之情形(b)單獨搖擺條件等溫流場TPF
值隨Ro 或Pi 變化而改變之情形 .................................................................... 41
圖15 (a) Nu(b) f (c)TPF 於Re=2000 及3000,βΔT = 0 和0.004 時隨Ro 及Pi 變
化而改變之情形 ................................................................................................. 42
圖16 Re = (a) 500 (b) 5000 時,於βΔT 增加之條件其TPF 值隨Ro 及Pi 變化而
改變之情形 ......................................................................................................... 43
表1 實驗參數範圍 .................................................................................................... 21
[1] S.W. Chang, A.W. Lees, T.C. Chou, Heat transfer and pressure drop in furrowed channels with transverse and skewed sinusoidal wavy walls, Int. J. Heat Mass Transfer 52 (2009) 4592–4603.
[2] S.W. Chang, K.F. Chiang, G.F. Hong, Flow and heat transfer of convergent divergent narrow channel with two opposite skewed sinusoidal wavy walls, Journal of Taiwan Society of Naval Architects and Marine Engineers 28 (2009) 153–166.
[3] J.L. Goldstein, E.M. Sparrow, Heat/mass transfer characteristics for flow in a corrugated wall channel, ASME J. Heat Transfer 99 (1977) 187–195.
[4] E.M. Sparrow, J.W. Comb, Effect of interwall spacing and fluid flow inlet conditions on a corrugated-wall heat exchanger, Int. J. Heat Mass Transfer 26 (1983) 993–1005.
[5] T. Nishimura, A. Tarumoto, Y. Kawamura, Flow and mass transfer characteristics in wavy channels for oscillatory flow, Int. J. Heat Mass Transfer 31 (1987) 1007–1015.
[6] Y. Asako, H. Nakamura, M. Faghri, Heat transfer and pressure drop characteristics in a corrugated duct with rounded corners, Int. J. Heat Mass Transfer 31 (1988) 1237–1245.
[7] T. Nishimura, T. Yoshino, Y. Kawamura, Instability of flow in a sinusoidal wavy channel with narrow spacing, J. Chem. Eng. Japan 20 (1987) 102–104.
[8] G. Wang, S.P. Vanka, Convective heat transfer in periodic wavy passages, Int. J.
Heat Mass Transfer 38 (1995) 3219–3230.
[9] T.A. Rush, T.A. Newell, A.M. Jacobi, An experimental study of flow and heat transfer in sinusoidal wavy passages, Int. J. Heat Mass Transfer 42 (1999) 1451–1553.
[10] M. Rokni, T.B. Gatski, Predicting turbulent convective heat transfer in fully developed duct flows, Int. J. Heat Fluid Flow 22 (2001) 381–392.
[11] H.S. Choi, K. Suzuki, Large eddy simulation of turbulent flow and heat transfer in a channel with one wavy wall, Int. J. Heat Fluid Flow 26 (2005) 681–694.
[12] T.S. Park, H.S. Choi, K. Suzuki, Nonlinear k–e-fl model and its application to the
flow and heat transfer in a channel having one undulant wall, Int. J. Heat Mass Transfer 47 (2004) 2403–2415.
[13] G. Russ, H. Beer, Heat transfer and flow field in a pipe with sinusoidal wavy surface _ I. Numerical investigation, Int. J. Heat Mass Transf. 40 (1997) 1061–1070.
[14] N. Kruse, Rudolf von Rohr Philipp, Structure of turbulent heat flux in a flow over a heated wavy wall, Int. J. Heat Mass Transfer 49 (2006) 3514–3529.
[15] S. Kuhn, Rudolf von Rohr Philipp, Experimental investigation of mixed convective flow over a wavy wall, Int. J. Heat Fluid Flow 29 (2008) 94–106.
[16] F.W. Dittus, L.M.K. Boelter, University of California, Berkeley, CA, Publications in Engineering, 2 (1930) p. 443.
[17] J.C. Han, Y.M. Zhang, C.P. Lee, Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs, ASME J. Turbomachinery 113 (1991) 590–597.
[18] M.E. Taslim, T. Li, D. Kercher, Experimental heat transfer and friction in channels roughened with angle, V-shaped, and discrete ribs on two opposite walls, ASME J. Turbomachinery 118 (1996) 20–28.
[19] S.W. Chang, L.M. Su, T.L. Yang, Heat transfer in a swinging rectangular duct
with two opposite walls roughened by 45_ staggered ribs, Int. J. Heat Mass Transfer 47 (2004) 287–305.
[20] T. Ishida, T. Kusunokib, H. Murata, Thermal-hydraulic behavior of a marine reactor during oscillations, Nuclear Eng. Design 120 (1990) 213–225.
[21] T. Ishida, T. Yoritsune, Effects of ship motion on natural circulation of deep sea
research reactor DRX, Nuclear Eng. Design 215 (2002) 51–67.
[22] H. Murata, K. Sawada, M. Kobayashi, Natural circulation characteristics of a
marine reactor in rolling motion and heat transfer in the core, Nuclear Eng. Design 215 (2002) 69–85.
[23] S.-C. Tan, G.H. Su, P.-Z. Gao, Experimental and theoretical study on singlephase
natural circulation flow and heat transfer under rolling motion condition, Appl. Therm. Eng. 29 (2009) 3160–3168.
[24] S.W. Chang, Y. Zheng, Enhanced heat transfer with swirl duct under rolling and
pitching environment, J. Ship Res. 46 (2002) 149–166.
[25] S.W. Chang, T.-M. Liou, J.S. Liou, K.-T. Chen, Turbulent heat transfer in a tube fitted with serrated twist tape under rolling and pitching environments with applications to shipping machineries, J. Ocean Eng. 25 (2008) 1569–1577.
[26] Editorial Board of ASME Journal of Heat Transfer, Journal of heat transfer policy on reporting uncertainties in experimental measurements and results, ASME
Journal of Heat Transfer 115 (1993) 5-6.
[27] M.V. Pham, F. Plourde, S.K. Doan, Turbulent heat and mass transfer in sinusoidal wavy channels, Int. J. Heat Fluid Flow 29 (2008) 1240–1257.
[28] F.W., Dittus, L.M.K., Boelter, University of California, Berkeley, CA, Publications in Engineering, 2 (1930) 443.
[29] X. Gao, B. Sunden, PIVmeasurement of the flowfield in rectangular ductswith 60° parallel, crossed and V-shaped ribs, Exp. Thermal Fluid Sci. 28 (2004) 639–653.
[30] M.E. Taslim, T. Li, Experimental heat transfer and friction in channels
roughened with angle V-shaped and discrete ribs on two opposite walls, ASME J. Turbomachinery 118 (1996) 20–28.[31] S.W. Chang, T.-M. Liou, K.F. Chiang, G.F. Hong, Heat transfer and pressure drop in rectangular channel with compound roughness of V-shaped ribs and deepened scales, Int. J. Heat Mass Transfer 51 (2008) 457–468.
[32] A. Murata, S. Mochizuki, Effect of cross-sectioned aspect ratio on turbulent heat transfer in an orthogonally rotating rectangular duct with angled rib turbulators, Int. J. Heat Mass Transfer 46 (2003) 3119–3133.
[33] K.M. Kim, Y.Y. Kim, D.H. Lee, D.H. Rhee, H.H. Cho, Influence of duct aspect ratio on heat/mass transfer in coolant passages with rotation, Int. J. Heat Fluid Flow 28 (2007) 357–373.
[34] T.-M. Liou, S.W. Chang, J.S. Chen, T.L. Yang, Y.-A. Lan, Influence of channel
aspect ratio on heat transfer in rotating rectangular ducts with skewed ribs at high rotation numbers, Int. J. Heat Mass Transfer 52 (2009) 5309–5322.
[35] M. Ali, S. Ramadhyani, Experiments on convective heat transfer in corrugated channels, Experimental Heat Transfer 5 (1992) 175-193.
[36] T. Nishimura, Y. Kajimoto, A. Tarumoto, Y. Kawamura, Flow structure and mass transfer for a wavy channel in transitional flow regime, J. Chemical Engineering Japan 19 (1986) 449-455.
[37] Chang, S.W., A. W. Lees, T.-M. Liou, G.F. Hong, Heat transfer of a radially rotating furrowed channel with two opposite skewed sinusoidal wavy walls, Int. J. Thermal Sciences 49 (2010) 769-785.
[38] Hong, S.W. and Bergles, A.E., Augmentation of laminar flow heat transfer in tubes by means of twisted-tape inserts, ASME J. Heat Transfer, pp. 251~256, May, 1976.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔