(34.201.11.222) 您好!臺灣時間:2021/02/25 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳皓文
研究生(外文):Hao-wen Chen
論文名稱:低成本CMOS智慧型溫度感測器之設計與實作
論文名稱(外文):Design and Realization of Low Cost CMOS Smart Temperature Sensors
指導教授:陳俊吉陳俊吉引用關係
指導教授(外文):Chun-chi Chen
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:時域型溫度感測器互補式金屬氧化物半導體單一延遲線
外文關鍵詞:One delay lineTime-domainTemperature sensorCMOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
(紙本延後至108820止公開)
(紙本延後至108820止公開)
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
一、 緒論 1
1.1 研究動機 1
1.2 論文架構 4
二、 溫度感測器 5
2.1 溫度感測器介紹 5
2.1.1 電阻式溫度感測器(Resistance thermometers, RTD) 6
2.1.2 熱電耦式溫度感測器(Thermocouple, TC) 6
2.1.3 熱敏電阻式溫度感測器(Thermally Sensitive Resistance, TSR) 6
2.1.4 積體電路式溫度感測器(CMOS Temperature Sensor) 7
2.1.5 溫度感測器總結 7
2.2 溫度感測器參數介紹 8
2.2.1 溫度範圍(Temperature Range) 8
2.2.2 解析度(Resolution) 8
2.2.3 精確度(Accuracy) 9
2.2.4 轉換率(Conversion Rate) 9
2.2.5 功率消耗(Power Consumption) 9
2.2.6 成本(Cost) 10
2.2.7 優質比(Figure of Merit, FoM) 10
2.3 積體電路式溫度感測器種類 11
2.3.1 積體電路式電壓型溫度感測器 11
2.3.2 積體電路式時域型溫度感測器 17
三、 低成本CMOS智慧型溫度感測器 22
3.1 研究動機 22
3.2 單一延遲線之低成本CMOS智慧型溫度感測器 23
3.2.1 簡述 23
3.2.2 路徑選擇電路 25
3.2.3 溫度至脈衝轉換階段 27
3.2.4 時間量測轉換階段 30
3.2.5 計數器 33
四、 電路設計與模擬 34
4.1 設計流程與考量 34
4.2 單一延遲線之低成本CMOS智慧型溫度感測器 37
4.2.1 溫度至脈衝轉換階段模擬 37
4.2.2 時間量測轉換模擬 39
4.2.3 計數器模擬 41
4.2.4 整體電路規格、模擬與佈局 42
五、 量測結果、結論與未來展望 47
5.1 量測環境 47
5.2 量測步驟與結果 50
5.2.1 低成本CMOS智慧型溫度感測器 51
5.3 結論 55
5.4 未來展望 56
參考文獻 58
[1]陳瑞和, “感測器,” 全華圖書, Jan. 1993
[2]Bakker, et al., “High accuracy CMOS smart temperature sensors,” Kluwer Academic Publishers, 2000.
[3]G.C. M. Meijer, et al., “Temperature sensor and voltage reference implemented in CMOS technology,” IEEE J. Sensors, vol.1, no. 3, pp. 225-235, Oct. 2001.
[4]C. Poirier, et al., “Power and Temperature control on a 90nm Itanium Family Processor” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 229–237 Jan. 2006.
[5]M. Sasaki, et al., “A Temperature Sensor With an Inaccuracy of -1/+0.8°C Using 90-nm 1-V CMOS for Online Thermal Monitoring of VLSI Circuits,” IEEE Transaction on Semiconductor Manufacturing, vol. 21, no. 2, May. 2008.
[6]J. Yin, et al., “A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor,” IEEE ISSCC Dig., pp. 308-309, Feb. 2010.
[7]Databeans, “2010 Temperature Sensors,” http://www.databeans.com
[8]P. Chen, et al., “A Time-Domain Sub-Micro Watt Temperature Sensor With Digital Set-Point Programming,” IEEE J. Sensors, vol. 9, no. 12, pp. 1639-1646, Dec. 2009.
[9]P. Chen, et al., “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642-8, Aug. 2005.
[10]Agilent Technologies., “Practical Temperature Measurements,” Jan. 2012.
[11]財團法人國家實驗研究院國家晶片系統設計中心, “對外服務收費方式與說明” http://www.cic.org.tw/cic_v13/soc/pdf/service_fee.pdf
[12]K. Souri, et al., “A 0.12 mm2 7.4 W Micropower Temperature Sensor With an Inaccuracy of 0.2 oC (3σ) From 30 oC to 125 oC,” IEEE J. Solid-State Circuits, vol. 46, no. 7, July 2011.
[13]K. Souri, et al., “A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of 0.15 oC (3σ) From 55 oC to 125 oC,” IEEE J. Solid-State Circuits, vol. 48, no. 1, Jan. 2013.
[14]Andre L. Aita, et al., “Low-Power CMOS Smart Temperature Sensor With a Batch-Calibrated Inaccuracy of ±0.25 °C (±3σ) from −70 °C to 130 °C,” IEEE J. Sensors, vol. 13, no. 5, May. 2013.
[15]Young-Jae An, et al., “An Energy Efficient Time-Domain Temperature Sensor for Low-Power On-Chip Thermal Management,” IEEE J. Sensors, vol. 14, no. 1, Jan. 2014.
[16]K. Souri, et al., “A 0.85V 600nW All-CMOS Temperature Sensor with an Inaccuracy of ±0.4°C (3σ) from -40 to 125°C,” IEEE International Solid-State Circuits Conference, Feb. 2014.
[17]Heidary, et al., “A BJT-Based CMOS Temperature Sensor with a 3.6pJ‧K2-Resolution FoM,” IEEE International Solid-State Circuits Conference, Feb. 2014.
[18]A. BAKKER, “CMOS Smart Temperature Sensors – An Overview,” Proc. IEEE Sensors, vol. 2, pp. 1423-1427, Jun. 2002.
[19]K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973.
[20]A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 933–937, Jul. 1996.
[21]M.-C. Weng and J.-C. Wu, “A Temperature sensor in 0.6μm CMOS Technology,” IEEE Asia Pacific CNF, pp. 116-119, Aug. 1999.
[22]M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A High-Accuracy Temperature Sensor with Second-Order Curvature Correction and Digital Bus Interface,” IEEE International Symposium on Circuits and Systems, pp. 368–371, May. 2001.
[23]M. A. P. Pertijs, K. A. A. Makinwa and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of ±0.1 °C From -55 °C to 125 °C,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
[24]A. L. Aita, M. Pertijs, K. Makinwa and J. H. Huijsing, “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 342-343, Feb. 2009.
[25]G. Wang, and G.C.M. Meijer, “The Temperature Characteristics of Bipolar Transistors Fabricated in CMOS Technology,” Sens. Actuat., vol. 87, pp. 81-89, 2000.
[26]P. Chen, C.-C. Chen, W.-F. Lu and C.-C. Tsai, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, Aug. 2005.
[27]C.-C. Chen, P. Chen, A.-W. Liu, W.-F. Lu, and Y.-C. Chang, “An Accurate CMOS Delay-Line-Based Smart Temperature Sensor for Low-Power Low-Cost Systems,” Meas. Sci. Technol., vol. 17, no 4, pp. 840-846, Apr. 2006.
[28]P. Chen, C.-C. Chen, T.-K. Chen, and S.-W. Chen, “A Time-Domain Mixed-Mode Temperature Sensor with Digital Set-Point Programming,” in Proc. IEEE CICC, pp. 821-824, Sept. 2006.
[29]Nguyen Thanh Trung , Kwansu Shon, and Soo-Won Kim “A Delay Line with Highly Linear Thermal Sensitivity for Smart Temperature Sensor,” in Proc. 50th MWSCAS, pp. 899-902, Aug. 2007.
[30]P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng and C.-Y. Chu, “A Fully Digital Time Domain Smart Temperature Sensor Realized with 140 FPGA Logic Elements”, IEEE Transactions on Circuits and Systems I, vol. 54, pp. 2661-2668, Dec. 2007.
[31]M. K. Law and A. Bermak, “A Time Domain Differential CMOS Temperature Sensor with Reduced Supply Sensitivity,” IEEE International Symposium on Circuits and Systems, pp. 2126-2129, May. 2008.
[32]C. K. Kim, B. S. Kong, C. G. Lee and Y. H. Jun, “ CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems, pp. 3094-3097, May. 2008.
[33]Y. Ren, C. Wang and H. Hong, “An all CMOS temperature sensor for thermal monitoring of VLSI circuits,” IEEE Circuits and Systems International Conference on Testing and Diagnosis, pp. 1-5, Apr. 2009.
[34]K. Kim, H. Lee, S. Jung and C. Kim, “A 366kS/s 400uW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” in Proc. Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009.
[35]P. Chen, C.-C. Chen, Y.-H. Peng, K.-M. Wang and Y.-S. Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of −0.4°C ∼ +0.6°C Over a 0°C to 90°C Range,” IEEE J. Solid-State Circuits, vol. 45, no. 3, Mar. 2010.
[36]Y. Tsividis, “Operation and Modeling of the MOS Transistor Second Edition. ” New York: McGraw-Hill, 1999.
[37]M. M. MANO, “DIGITAL DESIGN.” Third edition, Prentice Hall, Inc., 2002.
[38]P. Chen, S.-L. Liu, and J. Wu “A CMOS Pulse-Shrinking Delay Element For Time Interval Measurement,” IEEE Trans. Circuits Syst. II, vol. 47, no. 9, pp. 954 - 958, Sep. 2000.
[39]I. M. Filanovsky and A. Allam, “Mutual Compensation of Mobility and Threshold Voltage Temperature Effects with Applications in CMOS Circuits,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 7, pp. 876-884, Jul. 2001.
[40]National Semiconductor ,”LM117/LM317A/LM317 3-Terminal Adjustable Regulator General Description”, Oct. 2008.
[41]F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A 1.2 V 10 ?巰 NPN-based temperature sensor in 65 nm CMOS with an inaccuracy of ?b0.2 ?aC (3?? from -70 C to 125 C,” in Proc. IEEE ISSCC Dig., Feb. 2010, pp. 312–313.
[42]K. Souri, M. Kashmiri, and K. A. A. Makinwa, “A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of ?b0.25 ?aC (3?? from 40 to 125 ?aC,” in Proc. IEEE ISSCC Dig., Feb. 2010, pp. 310–311.
[43]P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng, and C.-Y. Chu, “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” IEEE Trans. Circuits Syst. I, vol. 54, no. 12, pp. 2661–2668, Dec. 2007.
[44]Y.-S. Lin, D. Sylvester, and D. Blaauw, “An ultra low power 1 V, 220 nW temperature sensor for passive wireless applications,” in Proc. IEEE CICC Dig., Sep. 2008, pp. 507–510.
[45]M.-K. Law and A. Bermak, “A 405-nW CMOS temperature sensor based on linear MOS operation,” IEEE Trans. Circuits Syst. II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
[46]M.-K. Law, A. Bermak, and H.-C. Luong, “A Sub-?巰 Embedded CMOS Temperature Sensor for RFID Food Monitoring Application,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1246–1255, Jun. 2010.
[47]C.-C. Chung and C.-R. Yang, “An Autocalibrated All-Digital Temperature Sensor for On-Chip Thermal Monitoring,” IEEE Trans. Circuits Syst. II, vol. 58, no. 2, pp. 105–109, Feb. 2011.
[48]K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, and D. Ham, “Time-Domain CMOS Temperature Sensors With Dual Delay-Locked Loops for Microprocessor Thermal Monitoring,” IEEE Transaction on VLSI, vol. 20, no. 9, pp. 1590–1601, Sept. 2012.
[49]K. Kim, H. Lee, and C. Kim, “366-Ks/s 1.09-nJ 0.0013-mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing multiphase clock,” IEEE Transaction on VLSI, vol. 20, no. 12, pp. 1–5, Dec. 2012.
[50]K. C. Liu, “A High-Resolution CMOS Time-to-Digital Converter Based on Pulse Shrinking and Pulse Stretching,” NKFUST, Electronic Engineering and Computer Science, Master’s Thesis, Jun. 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔