|
[1]陳瑞和, “感測器,” 全華圖書, Jan. 1993 [2]Bakker, et al., “High accuracy CMOS smart temperature sensors,” Kluwer Academic Publishers, 2000. [3]G.C. M. Meijer, et al., “Temperature sensor and voltage reference implemented in CMOS technology,” IEEE J. Sensors, vol.1, no. 3, pp. 225-235, Oct. 2001. [4]C. Poirier, et al., “Power and Temperature control on a 90nm Itanium Family Processor” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 229–237 Jan. 2006. [5]M. Sasaki, et al., “A Temperature Sensor With an Inaccuracy of -1/+0.8°C Using 90-nm 1-V CMOS for Online Thermal Monitoring of VLSI Circuits,” IEEE Transaction on Semiconductor Manufacturing, vol. 21, no. 2, May. 2008. [6]J. Yin, et al., “A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor,” IEEE ISSCC Dig., pp. 308-309, Feb. 2010. [7]Databeans, “2010 Temperature Sensors,” http://www.databeans.com [8]P. Chen, et al., “A Time-Domain Sub-Micro Watt Temperature Sensor With Digital Set-Point Programming,” IEEE J. Sensors, vol. 9, no. 12, pp. 1639-1646, Dec. 2009. [9]P. Chen, et al., “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642-8, Aug. 2005. [10]Agilent Technologies., “Practical Temperature Measurements,” Jan. 2012. [11]財團法人國家實驗研究院國家晶片系統設計中心, “對外服務收費方式與說明” http://www.cic.org.tw/cic_v13/soc/pdf/service_fee.pdf [12]K. Souri, et al., “A 0.12 mm2 7.4 W Micropower Temperature Sensor With an Inaccuracy of 0.2 oC (3σ) From 30 oC to 125 oC,” IEEE J. Solid-State Circuits, vol. 46, no. 7, July 2011. [13]K. Souri, et al., “A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of 0.15 oC (3σ) From 55 oC to 125 oC,” IEEE J. Solid-State Circuits, vol. 48, no. 1, Jan. 2013. [14]Andre L. Aita, et al., “Low-Power CMOS Smart Temperature Sensor With a Batch-Calibrated Inaccuracy of ±0.25 °C (±3σ) from −70 °C to 130 °C,” IEEE J. Sensors, vol. 13, no. 5, May. 2013. [15]Young-Jae An, et al., “An Energy Efficient Time-Domain Temperature Sensor for Low-Power On-Chip Thermal Management,” IEEE J. Sensors, vol. 14, no. 1, Jan. 2014. [16]K. Souri, et al., “A 0.85V 600nW All-CMOS Temperature Sensor with an Inaccuracy of ±0.4°C (3σ) from -40 to 125°C,” IEEE International Solid-State Circuits Conference, Feb. 2014. [17]Heidary, et al., “A BJT-Based CMOS Temperature Sensor with a 3.6pJ‧K2-Resolution FoM,” IEEE International Solid-State Circuits Conference, Feb. 2014. [18]A. BAKKER, “CMOS Smart Temperature Sensors – An Overview,” Proc. IEEE Sensors, vol. 2, pp. 1423-1427, Jun. 2002. [19]K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973. [20]A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 933–937, Jul. 1996. [21]M.-C. Weng and J.-C. Wu, “A Temperature sensor in 0.6μm CMOS Technology,” IEEE Asia Pacific CNF, pp. 116-119, Aug. 1999. [22]M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A High-Accuracy Temperature Sensor with Second-Order Curvature Correction and Digital Bus Interface,” IEEE International Symposium on Circuits and Systems, pp. 368–371, May. 2001. [23]M. A. P. Pertijs, K. A. A. Makinwa and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of ±0.1 °C From -55 °C to 125 °C,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005. [24]A. L. Aita, M. Pertijs, K. Makinwa and J. H. Huijsing, “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 342-343, Feb. 2009. [25]G. Wang, and G.C.M. Meijer, “The Temperature Characteristics of Bipolar Transistors Fabricated in CMOS Technology,” Sens. Actuat., vol. 87, pp. 81-89, 2000. [26]P. Chen, C.-C. Chen, W.-F. Lu and C.-C. Tsai, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, Aug. 2005. [27]C.-C. Chen, P. Chen, A.-W. Liu, W.-F. Lu, and Y.-C. Chang, “An Accurate CMOS Delay-Line-Based Smart Temperature Sensor for Low-Power Low-Cost Systems,” Meas. Sci. Technol., vol. 17, no 4, pp. 840-846, Apr. 2006. [28]P. Chen, C.-C. Chen, T.-K. Chen, and S.-W. Chen, “A Time-Domain Mixed-Mode Temperature Sensor with Digital Set-Point Programming,” in Proc. IEEE CICC, pp. 821-824, Sept. 2006. [29]Nguyen Thanh Trung , Kwansu Shon, and Soo-Won Kim “A Delay Line with Highly Linear Thermal Sensitivity for Smart Temperature Sensor,” in Proc. 50th MWSCAS, pp. 899-902, Aug. 2007. [30]P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng and C.-Y. Chu, “A Fully Digital Time Domain Smart Temperature Sensor Realized with 140 FPGA Logic Elements”, IEEE Transactions on Circuits and Systems I, vol. 54, pp. 2661-2668, Dec. 2007. [31]M. K. Law and A. Bermak, “A Time Domain Differential CMOS Temperature Sensor with Reduced Supply Sensitivity,” IEEE International Symposium on Circuits and Systems, pp. 2126-2129, May. 2008. [32]C. K. Kim, B. S. Kong, C. G. Lee and Y. H. Jun, “ CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems, pp. 3094-3097, May. 2008. [33]Y. Ren, C. Wang and H. Hong, “An all CMOS temperature sensor for thermal monitoring of VLSI circuits,” IEEE Circuits and Systems International Conference on Testing and Diagnosis, pp. 1-5, Apr. 2009. [34]K. Kim, H. Lee, S. Jung and C. Kim, “A 366kS/s 400uW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” in Proc. Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009. [35]P. Chen, C.-C. Chen, Y.-H. Peng, K.-M. Wang and Y.-S. Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of −0.4°C ∼ +0.6°C Over a 0°C to 90°C Range,” IEEE J. Solid-State Circuits, vol. 45, no. 3, Mar. 2010. [36]Y. Tsividis, “Operation and Modeling of the MOS Transistor Second Edition. ” New York: McGraw-Hill, 1999. [37]M. M. MANO, “DIGITAL DESIGN.” Third edition, Prentice Hall, Inc., 2002. [38]P. Chen, S.-L. Liu, and J. Wu “A CMOS Pulse-Shrinking Delay Element For Time Interval Measurement,” IEEE Trans. Circuits Syst. II, vol. 47, no. 9, pp. 954 - 958, Sep. 2000. [39]I. M. Filanovsky and A. Allam, “Mutual Compensation of Mobility and Threshold Voltage Temperature Effects with Applications in CMOS Circuits,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 7, pp. 876-884, Jul. 2001. [40]National Semiconductor ,”LM117/LM317A/LM317 3-Terminal Adjustable Regulator General Description”, Oct. 2008. [41]F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, and B. Nauta, “A 1.2 V 10 ?巰 NPN-based temperature sensor in 65 nm CMOS with an inaccuracy of ?b0.2 ?aC (3?? from -70 C to 125 C,” in Proc. IEEE ISSCC Dig., Feb. 2010, pp. 312–313. [42]K. Souri, M. Kashmiri, and K. A. A. Makinwa, “A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of ?b0.25 ?aC (3?? from 40 to 125 ?aC,” in Proc. IEEE ISSCC Dig., Feb. 2010, pp. 310–311. [43]P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng, and C.-Y. Chu, “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” IEEE Trans. Circuits Syst. I, vol. 54, no. 12, pp. 2661–2668, Dec. 2007. [44]Y.-S. Lin, D. Sylvester, and D. Blaauw, “An ultra low power 1 V, 220 nW temperature sensor for passive wireless applications,” in Proc. IEEE CICC Dig., Sep. 2008, pp. 507–510. [45]M.-K. Law and A. Bermak, “A 405-nW CMOS temperature sensor based on linear MOS operation,” IEEE Trans. Circuits Syst. II, vol. 56, no. 12, pp. 891–895, Dec. 2009. [46]M.-K. Law, A. Bermak, and H.-C. Luong, “A Sub-?巰 Embedded CMOS Temperature Sensor for RFID Food Monitoring Application,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1246–1255, Jun. 2010. [47]C.-C. Chung and C.-R. Yang, “An Autocalibrated All-Digital Temperature Sensor for On-Chip Thermal Monitoring,” IEEE Trans. Circuits Syst. II, vol. 58, no. 2, pp. 105–109, Feb. 2011. [48]K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, and D. Ham, “Time-Domain CMOS Temperature Sensors With Dual Delay-Locked Loops for Microprocessor Thermal Monitoring,” IEEE Transaction on VLSI, vol. 20, no. 9, pp. 1590–1601, Sept. 2012. [49]K. Kim, H. Lee, and C. Kim, “366-Ks/s 1.09-nJ 0.0013-mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing multiphase clock,” IEEE Transaction on VLSI, vol. 20, no. 12, pp. 1–5, Dec. 2012. [50]K. C. Liu, “A High-Resolution CMOS Time-to-Digital Converter Based on Pulse Shrinking and Pulse Stretching,” NKFUST, Electronic Engineering and Computer Science, Master’s Thesis, Jun. 2013.
|